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Abstract—Up-to-date maps of installed solar photovoltaic pan-
els are a critical input for policy and financial assessment of
solar distributed generation. However, such maps for large
areas are not available. With high coverage and low cost, aerial
images enable large-scale mapping, but it is highly difficult to
automatically identify solar panels from images, which are
small objects with varying appearances dispersed in complex
scenes. We introduce a new approach based on deep convo-
lutional networks, which effectively learns to delineate solar
panels in aerial scenes. The approach is applied to mapping
solar panels in imagery covering 200 square kilometers in two
cities, using only 12 square kilometers of training data that
are manually labeled. Results are generated efficiently with an
accuracy comparable to manual mapping, demonstrating the
effectiveness and scalability of our approach.
Index Terms—Solar PV panel, convolutional network, mapping

1. Introduction

Solar photovoltaic (PV) is the fastest growing source of
distributed generation. There has been a significant increase
in the number of installed solar panels in recent years. In
U.S. solar installations are expected to reach 16 gigawatts,
doubling installations in 20151. However, the actual distribu-
tion of installed solar panels is not available on a large scale.
The detailed information about installed solar panels is only
available to installers and utility companies, who usually are
reluctant to share the data. Therefore, a reliable and scalable
solution to solar panel mapping is highly desired, which will
greatly benefit applications related to energy policy making,
power systems, and solar PV market analysis.

In this paper, we aim to map solar panels using aerial
images. Thanks to advances made in remote sensing capabil-
ities, aerial images with high spatial and temporal resolution

1. http://www.seia.org/news/us-solar-market-set-grow-119-2016-
installations-reach-16-gw

Figure 1. An aerial image containing solar panels. Zoom-in views are
provided to show installed solar panels.

are widely available, which provide an ideal data source for
mapping solar panels. Infrared images are recently utilized
for solar panel detection [1], which, however, are much less
available.

Automatic detection of solar panels in aerial images
is a challenging task. Solar panels are very small objects
scattered in complex scenes. As shown in Fig. 1, solar panels
are considerably smaller than objects that are often targeted
in aerial image analysis, such as roads and buildings. We
will use images with a spatial resolution of 0.3 meters. A
large number of solar panels occupy less than one hundred
pixels, which provide very little image features and hence
can be easily confused with other objects. Moreover, the
appearances of solar panels in images vary vastly. In addi-
tion to image variations caused by differences in acquisition
conditions, solar panels have a variety of types, sizes, and
shapes.

To the best of our knowledge, this is the first work
dealing with large-scale solar panel detection from images.
From the technical aspect, this problem is related to object



instance detection, which have been studied in the com-
puter vision community. A typical framework is to design
features that can be computed from local windows and train
a detection system with such features as input. Given an
image, the detection system is applied with a window sliding
over the image to locate objects [2], [3]. Success of such
a framework highly depends on the discriminative power
of designed features, which often takes domain experts
tremendous effort to achieve. More importantly, features
from fixed size windows have inherent limitations when
dealing with small objects – a small size causes the loss
of contextual information and a large size results in features
capturing too much irrelevant information. A recent method
has been proposed that aims specifically at small objects
[4]. The method has been shown to work well on objects
with similar sizes in homogeneous background, while our
task deals with variously sized objects in extremely diverse
background.

Deep convolutional networks (ConvNets) trained with
massive labeled data have shown to be very powerful to
capture the hierarchical nature of features in images and
generalize beyond training samples [5]. The capabilities lead
to great success in challenging image classification problems
[6]. Built upon this success, ConvNet based object localiza-
tion and segmentation have also been actively studied [7],
[8]. However, there is little work reported for detecting very
small objects for two reasons. First, since in a ConvNet input
images go through a series of downsampling operations to
achieve high level representations, small objects are likely
to be discarded during the process and hard to recover. The
second reason lies in the fact that most work focuses on
natural image analysis, where it is generally acceptable to
miss very small objects, as long as more salient objects are
correctly identified.

In this paper, we present a solution for accurately ex-
tracting solar panels from aerial images. Our solution not
only detects solar panel locations but their spatial extent.
We employ a recently proposed ConvNet method [9], and
show that the design of the method is well suited for our
task. In order to cope with unique challenges of the task,
we take a number of special strategies of network training.
The performance of the trained system is demonstrated on
very large images containing complex urban scenes.

2. ConvNet for object extraction

We utilize the ConvNet approach proposed in [9]. Here
we provide a brief overview and explain the rationale of
applying the method to this task. The network architecture
is illustrated in Fig. 2. There are seven regular ConvNet
stages, each of which consists of a convolutional layer and
optionally a max-pooling layer. The network takes 3 band
input images. Convolutional layers of the seven stages have
50 filters of size 5× 5× 3, 70 filters of size 5× 5× 50, 100
filters of size 3×3×70, 150 filters of size 3×3×100, 100
filters of size of 3×3×150, 70 filters of size of 3×3×100,
and 70 filters of size of 3 × 3 × 70, respectively. Each of
the first four stages has a max-pooling over a 2 × 2 unit
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Figure 2. Network architecture. Solid arrows indicate convolutional op-
erations. Each cube represents output feature maps from a stage. Dotted
arrows indicate upsampling.

region. Because all the operations are performed locally,
input images can be in arbitrary sizes.

Different from regular ConvNets, there is an integration
stage, which upsamples feature maps from the first, second,
third, and seventh stages and generates a feature stack. In
the feature stack, each unit location has a feature vector
consisting of neuron activation at different layers. The fea-
ture vectors are fed into a single-layer perceptron classifier
to produce a prediction map, which is implemented as a
convolutional layer with a 1× 1× 290 filter. The prediction
map is half the size of input image.

This network has two appealing properties for solar
panel detection. First, the network outputs pixel-level pre-
dictions, which makes it possible for detecting very small
objects. Second, prediction is based on multi-stage features
capturing information at different semantic levels. Features
from early stages capture low-level information at fine res-
olutions, such as corners and edges, which are useful for
precise localization, while features from late stages capture
high-level information from large image patches, such as
whether an area is on a roof or a road.

The signed distance function of boundaries are intro-
duced to represent labeled data for training [9]. The signed
distance value of each pixel is the distance from the pixel to
its closest boundary pixel, and positive/negative signs indi-
cate insider/outside of objects. Since solar panels are sparse,
straightforward forms of labeled data including boundary
maps and region maps lead to highly imbalanced classes.
The signed distance transform essentially converts two-
class labels (object/non-object or boundary/non-boundary)
into labels with many fine-grained classes, which have a
more balanced sample distribution. Meanwhile, compared
to boundary maps and region maps, signed distance labels
contain more information of spatial layout that can be
learned. For example, the signed distance value of -5 (5
pixels away from solar panels) generally corresponds to
rooftop-like pixels, while -50 usually roads or parking lots.
Such information helps the network better learn to identify
solar panels.

In the final stage, we apply 128 filters of size 1 × 1 ×
290 to the feature stack, resulting in a prediction vector for



each pixel. This is similar to a class distribution in multi-
class classification, which is then normalized by the softmax
function. Each element of the normalized vector indicates
the probability of the pixel within a certain distance range.
The cost function is defined as the cross entropy with labeled
data rescaled to the 128 integers from -64 to 63. Compared
to the cost function built on single-value prediction, this cost
function leads to smaller training errors. When applying the
network, we take the sum of the 128 integers at each pixel
weighted by the normalized prediction vector.

3. Network training

We use orthorectified aerial images with RGB bands
covering Washington D.C., San Francisco, CA and Boston,
MA, which are respectively taken in 2012, 2012, and 2013.
Images of different cities are collected by different sensors at
different times and therefore exhibit distinct image charac-
teristics. The image resolution is 0.3 meter, which provides
necessary details for detecting most solar panels and has
a sufficiently high coverage. Although there exist images
with higher spatial resolution, they have lower availability
and require more computation for mapping a given region.

To obtain labeled data, three image analysts are assigned
to manually delineate solar panels on images, with help
of existing databases recording locations of installed solar
panels. Around 4000 solar panels were labeled in three days.
Based on the labels and images, we compile training data
by cropping images around labeled solar panels.

Initially, we create 500× 500 image tiles at the original
resolution (0.3 meters). We found that the network converges
very slowly when trained with such data. The main reason
is that the portion of solar panel pixels among all pixels is
minimal. Although the signed distance representation yields
more balanced class distributions than two-class represen-
tations (e.g., object/non-object), the number of solar panel
pixels at the original resolution is too small to generate
sufficient backpropagation errors after a certain period of
training. We take a simple approach to address this problem.
We upsample the image through interpolation to achieve
half the original resolution, and generate 500 × 500 image
tiles. By doing so, the percentage of solar panel pixels
in training data is considerably increased. We create 2040
training images and the corresponding label maps.

Training is based on stochastic gradient descent with 5
images as a mini-batch. We adopt the weight update rule
in [6] with learning rate 0.02, momentum 0.9, and weight
decay 5−4. We randomly select 1800 images for training and
valid on the rest with the metric of average misclassification
rate. The system is implemented using Theano [10]. The
network is trained using a single NVIDIA Tesla 12GB GPU.
The training stops after 140 epochs.

We visually inspect results from the trained network,
where most of solar panels are accurately extracted. How-
ever, there exist a noticeable amount of false alarms. Given
the way we create training images, each image corresponds
to an area of 75×75 square meters around solar panels, and
images are sparsely distributed. As a result, a multitude of

objects are never seen by the network. Although the network
is able to correctly reject most of them, it detects some
patterns that are similar to solar panels and rarely occur in
training data, such as tree shadows on rooftops and zebra
crossings. To improve results, we add images with such false
alarms to training data. We collect 110 images and label all
pixels as -64. The network is initialized with the previously
trained parameters and trained on the new dataset for 60
epochs. Despite the small number of extra images, the new
model produces a much lower false alarm rate. The two
rounds of training in total took roughly four days.

4. Results

We apply the trained network to two images, each of
which has 40, 000×30, 000 pixels, converting to 108 square
kilometers. One image covers the entire San Francisco area,
and the other an area in north Boston. Test images cover
18 times the area of training images (12 square kilometers).
The San Francisco image has a 4% overlap with training
images, and the Boston image is completely separate from
training images.

The network processes a 1000× 1000 tile at each time.
Note that since the network works with any input size, using
large input images reduces the overhead for dealing with
border effects. Tiles are 2× upsampled, and output maps are
downsampled back. In output, pixels with positive values are
considered solar panels, except for those forming connected
regions with less than 50 pixels. The network takes less
than 3 seconds to process a 1000 × 1000 tile. Each image
is completed in one hour using a single GPU.

Extraction results are presented in Figs. 3 and 4, where
solar panels are marked in red and overlaid with images.
Although the network is exposed to a very limited amount of
labeled data, especially negative samples, it works reliably
for the two images that have different characteristics caused
by imaging sensor properties, illumination, geographic fea-
tures, etc. In total, around 4,500 solar panels are extracted
in San Francisco and around 1,300 in Boston. For a better
visual assessment, Fig. 5 shows image patches (not covered
by training data) with detected solar panels. As can be seen,
solar panels are identified with well-localized boundaries
regardless of varying sizes and patterns. Most of errors in
the results are false alarms, which are special ground objects
that happen to be similar to solar panels in terms of both
object patterns and their surroundings. A few examples are
shown in Fig. 6. Incorporating more negative samples should
further reduce such errors.

For quantitative evaluation, we select an image tile of
5000 × 5000 pixels in each city that is not within training
data and manually generate ground truth. Measuring per
pixel accuracy is not practically meaningful in our task. Due
to the small size of solar panels, a few pixel mismatches
can significantly affect pixel based measurements but may
be negligible in applications. We use the following proce-
dure to compute two performance scores, completeness and
correctness, which are often used to compare road vectors
[11]. We compute centers of detected solar panels and dilate



Figure 3. Solar panel mapping result for the image covering San Francisco.

Figure 6. Examples of incorrect extractions.

manual labels by 1 meter. Completeness is defined as the
number of manual labels containing center points divided
by the total number of manual labels. Correctness is the
number of center points inside manual labels divided by

TABLE 1. QUANTITATIVE EVALUATION

Image Completeness Correctness
San Francisco 0.873 0.855

Boston 0.840 0.812

the total number of center points. The scores of results are
presented in Table 1.

The results can further improved by utilizing ancillary
data. For example, knowing installed solar panels are gen-
erally away from roads, we use road data to filter out
incorrect detection. We overlay road vector data from Open-
StreetMap2 with the results. A buffer area is defined around
roads. Solar panels overlapped with buffer areas are re-
moved. This simple process increases the correctness rate by
3% and 2% respectively for two images while maintaining
almost the same completeness.

2. https://www.openstreetmap.org/



Figure 4. Solar panel mapping result for the image covering Boston.

5. Conclusions

This paper addresses for the first time large-scale solar
panel mapping from aerial images. A special ConvNet is
utilized, and new training strategies are designed to tackle
particular challenges in this task. The trained system is
applied to high resolution images covering large areas in two
cites. Results show the promise of our approach. Moreover,
this work demonstrates that semantic objects captured by
a small number of pixels in aerial scenes can be reliably
extracted in an automatic way, and our approach can be
readily extended to a wide range of objects (e.g., vehicles,
road markings, swimming pools, etc.), which will signifi-
cantly enhance current mapping capabilities.
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