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Abstract—We present a new method for remote sensing image
segmentation, which utilizes both spectral and texture informa-
tion. Linear filters are used to provide enhanced spatial patterns.
For each pixel location, we compute combined spectral and texture
features using local spectral histograms, which concatenate local
histograms of all input bands. We regard each feature as a linear
combination of several representative features, each of which cor-
responds to a segment. Segmentation is given by estimating com-
bination weights, which indicate segment ownership of pixels. We
present segmentation solutions where representative features are
either known or unknown. We also show that feature dimensions
can be greatly reduced via subspace projection. The scale issue is
investigated, and an algorithm is presented to automatically select
proper scales, which does not require segmentation at multiple-
scale levels. Experimental results demonstrate the promise of the
proposed method.

Index Terms—Segmentation, singular value decomposition
(SVD), spectral histogram, texture.

I. INTRODUCTION

A S EARTH observation data are available with increas-
ingly high spatial and spectral resolution, object-based

image analysis approaches receives more and more attention
in analyzing remote sensing data [1]. In contrast to traditional
pixel-based analysis, object-based analysis uses regions or seg-
ments of an image as basic units, which has a number of
benefits, including reduced spectral variability and more spa-
tial and contextual information such as shape and topological
relationships. A key step in object-based analysis is image
segmentation, which partitions an image into nonoverlapping
regions so that each region is as homogeneous and neighboring
ones as different as possible. Segmentation provides building
blocks for object-based analysis.

Image segmentation has been extensively studied. In remote
sensing, a segmentation method should leverage the advances
made in data acquisition, specifically the spectral and spatial
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resolution capability. Multispectral (MS) images, which are the
main type acquired by remote sensing radiometers, provide
much enhanced capabilities of characterizing ground objects.
Meanwhile, high-resolution images contain rich texture infor-
mation, which has been shown to improve segmentation results
[2], [3]. Therefore, remote sensing segmentation methods are
expected to make use of both spectral and texture information
[4]–[6].

It is widely recognized that a visual texture is very difficult
to characterize. In remote sensing image analysis, morpholog-
ical transformations are often employed to deal with texture
information [6]–[8]. However, morphological operations have
limited forms and, thus, lack the ability to describe complex
textures. Semivariograms, which quantify spatial variability,
are frequently used for texture analysis in geospatial data
[9], [10]. The main drawback of using a semivariogram as a
texture descriptor is the high computational cost, which makes
it impractical for large images. Recent work on texture analysis
shows an emerging consensus that an image should be first con-
volved with a bank of filters tuned to various orientations and
spatial frequencies [11]–[13]. Texture descriptors constructed
by analyzing the local distribution of filter responses have
been shown to be powerful features for texture synthesis and
discrimination.

With such texture descriptors, one can develop a combined
spectral–texture segmentation framework by feeding integrated
features to clustering approaches to produce segmentation.
However, there are two main problems associated with such
framework. First, applying multiple filters to spectral bands
generates high-dimensional features. As a result, not only is
the computational cost high, but many clustering methods also
fail to work for high-dimensional data. The second problem
stems from texture descriptors generated from the image win-
dows crossing multiple regions [14], which cause difficulty in
localizing region boundaries.

In this paper, we use local spectral histogram representation
[15], which consists of histograms of filter responses in a local
window. This representation provides an effective feature to
capture both spectral and texture information. However, as
a form of texture descriptors, local spectral histograms also
suffer from the problems of high dimensionality and boundary
localization. To address these problems, we employ a recently
proposed segmentation method [16], which formulates seg-
mentation as multivariate linear regression. This method works
across different bands in a computationally efficient way and
accurately localizes boundaries.

With remote sensing images, segmentation is inextricably
linked to the scale issue. Conceptually, scale is a “window of
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perception” [17]. It is well known that meaningful structures
and objects exist over a certain range of scales. In image
processing, a scale usually refers to the size of the operators
or measurement probes used to extract information from image
data. Improper scales can lead to oversegmentation, where
segments correspond to portions of regions, or undersegmenta-
tion, where one segment contains multiple land-cover classes.
Due to the inherent multiscale nature of real-world objects,
many multiscale segmentation algorithms have been proposed
[8], [18]. However, manual interpretation is typically needed
in order to utilize the segmentation results at multiple levels,
which inevitably involve subjectivity. Moreover, it has been
shown that, in specific cases, single-scale representation might
be sufficient and more straightforward [19]. In this paper, we
focus on selecting a single scale: Based on our new formulation
of the segmentation problem, we propose a scale selection
method to appropriately characterize spatial patterns and give
a controlled smoothing effect.

The rest of this paper is organized as follows: In Section II,
we introduce the local spectral histogram representation.
Section III presents our segmentation algorithm in detail.
Section IV describes the scale selection method. In Section IV,
we show experimental results and comparisons. Section V
concludes this paper.

II. COMBINED FEATURES BASED ON LOCAL

SPECTRAL HISTOGRAMS

Given an input image window W and a bank of filters
{F (α), α = 1, 2, . . . , K}, we can compute a subband image
W(α) for each filter F (α) through convolution. For W(α),
we have the corresponding histogram, which is denoted by
H

(α)
W . In this paper, we use 11 equal-width bins for each filter

response. The spectral histogram is defined as the concatenation
of the histograms of different filter responses [21], i.e.,

HW =
1

|W|
(
H

(1)
W , H

(2)
W , . . . , H

(K)
W

)
(1)

where | · | denotes cardinality. The size of the window is
referred to as the integration scale. The spectral histogram
characterizes both local patterns via filtering and global patterns
through a histogram. It has been shown that, with properly
selected filters, the spectral histogram is sufficient to capture
texture appearance [15].

A local spectral histogram is computed over a window cen-
tered at a pixel location, which is essentially a feature vector
consisting of local distributions of filter responses. Since the
integration scale has to be large enough to obtain meaningful
features, it is computationally expensive to compute all the local
histograms. The integral histogram approach [20] can speed up
this process considerably. With integral histogram computed for
each subband image, we can obtain any local spectral histogram
via three vector arithmetic operations regardless of integration
scales. As a result, computing local spectral histograms at
all pixel locations takes linear time with respect to the pixel
number. A detailed description of the fast approach can be
found in [21].

To specify a spectral histogram, one needs to choose a set
of filters. Based on previous studies, three types of filters are
used in this paper, namely, the intensity filter, Laplacian of
Gaussian (LoG) filters, and Gabor filters. The intensity filter
is the Dirac delta function, which gives the intensity value at a
pixel location. LoG filters are given by

LoG(x, y|σ) = (x2 + y2 − 2σ2)e−
x2+y2

2σ2 . (2)

We use an even-symmetric Gabor filter, which has the following
form:

Gabor(x, y|σ, θ) = e−
1

2σ2 [(x cos θ+y sin θ)2+(−x sin θ+y cos θ)2]

× cos

[
2π

λ
(x cos θ + y sin θ)

]
(3)

where θ defines the orientation of the filter, and the ratio σ/λ is
set to 0.5. For both types of filters, σ determines the scale.

Local spectral histograms are capable of capturing both
spectral and texture information for remote sensing images. We
apply such filters to each spectral band, where the intensity
filter gives spectral intensities, and other linear filters generate
subband images that enhance certain spatial structures. Local
spectral histograms are computed from local windows across all
the bands, which collectively define a region appearance based
on spectral and spatial properties.

Due to limits in the radiation energy received by the sensor
and the data storage capacity [22], it is difficult to acquire
satellite images with high resolutions in both spectral and
spatial domains. To mitigate this problem, most Earth ob-
servation satellites, such as SPOT, IKONOS, and QuickBird,
provide both a panchromatic (PAN) image at a higher spatial
resolution and MS images at a lower spatial resolution. To
accommodate multiresolution data, we use the following ap-
proach to produce features at the PAN image resolution. The
MS images are first resampled to the size of the PAN image
using bicubic interpolation, and they are then combined with
the PAN image to generate local spectral histograms. Despite
less detail, the resized images preserve basic shapes of local
distributions, which are essential for the discriminative power
of spectral histograms. An alternative is to use pan-sharpening
techniques [22], which integrate two types of data to produce
high-resolution MS images. However, as spectral histograms
are built on local distributions, sharpened images, which give
more detailed distributions, can make local features less similar
to neighboring ones. Therefore, our method does not use pan-
sharpening to deal with multiresolution data.

III. SEGMENTATION ALGORITHM

Here, we present the algorithm that utilizes local spectral
histogram features to produce accurate segmentation. We refer
the reader to [16] for a more detailed analysis.

A. Segmentation Using Linear Regression

Without loss of generality, let us consider an image con-
sisting of three agricultural fields placed in a way shown in
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Fig. 1. Image segmentation via linear regression. (a) Synthesized image with
size 320 × 320. The feature at pixel A can be approximated by the weighted
sum of two neighboring representative features. (b) Segmentation result using
least squares estimation.

Fig. 1(a). The local spectral histogram at a pixel location A is
computed using a square window that crosses two regions. As
discussed in Section I, this feature does not carry discriminative
information, and thus, the corresponding pixel is difficult to
correctly classify.

We assume that local spectral histograms within a homo-
geneous region are approximately constant. We then have a
representative feature for each region. Let us consider only
intensity filters for the time being, which simplifies local spec-
tral histograms to local histograms of pixel intensity. The local
histogram of pixel A can be approximated by a linear combi-
nation of two histograms representing two neighboring regions,
and the combination weights correspond to the area coverage
within the window. Hence, we can assign this pixel to the region
whose histogram has a larger weight. Such a linear relationship
between a boundary feature and representative features holds
for other filter responses, except when the scales of filters
are very large, which can significantly distort histograms near
the boundaries. Since filtering in spectral histograms aims to
capture basic spatial patterns, the use of large-scale filters is
discouraged. As a result, although a filter may have strong
responses to region boundaries, it does not have a significant
effect on the local spectral histograms, which are computed
from a much larger local window.

By extending the above analysis, each feature in an image
can be regarded as a linear combination of all representative
features weighted by the fractional area coverage in the local
window. Given an image with N pixels, M -dimensional fea-
tures at each pixel, and L representative features, we use a
multivariate linear regression model to associate each feature
to the representative features, which is expressed as

Y = Zβ + ε (4)

where Y is an M ×N matrix with each column representing a
feature at a pixel location, Z is an M × L matrix containing
L representative features, β is an L×N matrix containing
combination weights for N pixels, and ε is an M ×N matrix
representing noise.

Representative features can be computed by manually se-
lecting seeds within each region. Given the feature matrix Y
and the representative feature set Z, we seek to estimate β that
best models the relationship between the feature matrix and the

representative features. This can be easily solved by the least
squares estimation, i.e.,

β̂ = (ZTZ)−1ZTY. (5)

The segmentation result is immediately given by β̂, where
the largest weight in each column indicates the segment own-
ership of the corresponding pixel. It is worth noting that in
the solution, all the dimensions of the features are involved to
estimate the weights, i.e., all the bands are taken into account to
produce segmentation. Fig. 1(b) shows the segmentation result
of the image in Fig. 1(a), where each segment is displayed
using a distinct gray value. We can see that different regions
are separated with rather accurate boundary localization. Here,
we use five filters, namely, the intensity filter, LoG (0.5), LoG
(1.0), Gabor(1.5, 0◦), and Gabor(1.5, 90◦).

The above image model bears some resemblance to the linear
mixing model used to analyze hyperspectral imagery [23],
which assumes that an observed spectrum is the linear combi-
nation of endmember spectrum weighted by the correspondent
abundance fractions. However, there are major differences. The
mixture in the linear mixing model is the measured spectrum
of each pixel location. In contrast, the mixture in our model
is the local spectral histogram extracted from an image patch.
More importantly, the purpose of decomposing a mixed pixel in
hyperspectral imagery is to identify material constituents at the
pixel location, whereas we decompose local spectral histograms
in order to locate region boundaries.

B. Segmentation Algorithm With Dimensionality Reduction

The image model presented above gives a semiautomatic
segmentation method, where a human operator needs to choose
seeds to obtain representative features. The choice of seeds can
be subjective and reliant on expert knowledge. To address this
problem, an unsupervised method is presented to estimate rep-
resentative features. Along a similar line, features are projected
onto low-dimensional space, which reduces noise and speeds
up the algorithm significantly.

To ensure a unique solution in (5), Z needs to have the full
column rank so that (ZTZ)−1 is not singular. Hence, represen-
tative features have to be linearly independent. Here, we assume
that Z has more rows than columns. That is, the number of
feature dimensions is larger than the number of representative
features. This assumption generally holds because the number
of feature dimensions corresponds to the product of the number
of filters, the number of spectral bands, and the number of
bins and, hence, tends to be relatively large. Since each feature
is a linear combination of representative features, the rank of
feature matrix Y should be the same as the rank of Z, i.e.,
the number of representative features. However, due to image
noise, Y tends to be of full rank. Due to the Eckart–Young
theorem [24], we can estimate the underlying feature matrix
with the expected rank.

The low-rank approximation is based on singular value de-
composition (SVD). The feature matrix can be decomposed in
the following form:

Y = UΣVT (6)
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where U is an M ×M matrix with each column representing
an eigenvector of YYT , and V is an N ×N matrix with each
column representing an eigenvector of YTY.

∑
is an M ×N

rectangular diagonal matrix with nonnegative real numbers
on its diagonal and zero elsewhere. The diagonal elements
are called singular values, which are the square roots of the
eigenvalues of YYT , or YTY.

Assume r representative features. According to the
Eckart–Young theorem, the best least squares rank-r approxi-
mation to Y has the same form as (6), except that the smallest
M − r singular values are replaced by zeros. Thus, we can
write the approximated matrix as

Y′ = U′Σ′V′T (7)

where U′ and V′ consist of the first r columns of U and V
in (6), respectively.

∑′ is an r × r matrix with the largest r
singular values on the diagonal.

Let β′ =
∑′ V′T . We note that U′ and β′ have the same

sizes as Z and β, respectively, which gives the minimum least
squares error guaranteed by the Eckart–Young theorem. Hence,
U′ and β′ can be the solution for the linear regression model in
(4). However, the decomposition is not unique because of the
following fact:

Y′ = U′β′ = U′QQ−1β′ (8)

where Q is any invertible square matrix, and thus, (U′Q) and
(Q−1β′) can be another possible solution.

Although the above analysis cannot immediately give the
final solution, it reveals that the representative features should
be U′ multiplied by some Q, i.e., some linear transformation
of U′. In other words, the representative features should lie
in an r-dimensional subspace spanned by the columns of U′,
which are orthogonal vectors. Note that, in general, the original
feature dimension M is much larger than r, which is the number
of representative features or segments. Consequently, we can
project all features onto the subspace, which greatly reduce the
feature dimension and remove the noise outside the subspace.
For example, if three filters are applied to a four-band MS
image, the dimension of features is 132 (11-bin histograms are
used). Subspace projection can reduce the feature dimension to
the number of representative features, which is typically smaller
than 10. Because features inside homogeneous regions are close
to the representative features, we apply k-means clustering to
the features in the subspace, where the cluster centers corre-
spond to the representative features. The representative features
can be easily obtained by projecting the cluster centers back to
the original space.

A problem can occur when performing k-means clustering.
The features near boundaries can form small clusters, which
make clustering very sensitive to initialization. To address this
problem, we measure edgeness for each pixel and discard
the features of pixels with high edgeness before clustering.
Specifically, at pixel location (x, y), we compute the feature
distance between pixel locations (x+ d, y) and (x− d, y)
and that between (x, y + d) and (x, y − d), where d is half
of the side length of W. Edgeness is the sum of the two
distances. Since features are in a low-dimensional space and

generally well grouped, we use the Euclidean distance as the
distance metric for both edgeness measurement and k-means
clustering.

IV. AUTOMATIC SCALE SELECTION

Local spectral histograms involve two types of scale param-
eters, namely, filter scales and integration scales, both of which
have an influence on segmentation results. With proper filter
scales, spatial patterns can be enhanced, which is important for
characterizing region appearances. Integration scales need to be
sufficiently large to capture meaningful features, but too large
scales will result in overly smooth segmentation [16]. Without
any prior knowledge, it is a challenging problem to find scales
that lead to optimal segmentation results. Here, we tackle this
problem by studying singular values of a feature matrix, which
does not require segmentation at different scale levels.

In the low-rank approximation, the approximation error is
related to the singular values of the original matrix in the
following way:

‖Y −Y′
r‖ =

√√√√ M∑
i=r+1

σ2
i (9)

where Y′
r is the rank-r approximation of matrix Y, ‖ · ‖

denotes the Frobenius norm1, and σ1, σ2, . . . , σM are singular
values in a nonincreasing order. Thus, we have

σ2
r =

M∑
i=r

σ2
i −

M∑
i=r+1

σ2
i =

∥∥Y−Y′
r−1

∥∥2−‖Y−Y′
r‖

2
. (10)

That is, σ2
r is equal to the reduced approximation error by

increasing the rank from r − 1 to r. Likewise, σ2
r+1 is equal

to the reduced error by increasing the rank from r to r + 1.
Assume that the number of representative features is r. σr

should be as large as possible so that the feature matrix can-
not be well approximated by a rank-(r − 1) matrix, whereas
σr+1 should be as small as possible because it corresponds to
noise. Hence, we select the scales based on these two singular
values.

We first determine filter scales. For a rigorous solution, we
need to select both filter types and filter scales, which give
rise to a very large search space. To make the problem more
tractable, we assume that for an image, a filterbank is known
to be sufficient to discriminate texture appearances, where the
filter scales are the only tunable parameters. Corresponding
filters in two filterbanks have scales of the same ratio; hence,
all filter scales in the filterbank depend on a single value. We
compute feature matrices for preselected scales sn = γns0,
where γ is the ratio between successive scale levels. s0 and γ
are set to 0.5 and 1.2, respectively, in our experiments. A fixed
integration scale that is equal to the largest filter scale is used for
all scale levels. We use the ratio σr / σr+1 of a feature matrix
as an indicator, and the scale with the maximum ratio is chosen.

1Frobenius norm is defined as the square root of the sum of the squares of all
matrix entries.
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Fig. 2. Experiments on three GeoEye-1 images with size 400 × 400. In each column, the top is the red band of images with segment boundaries marked in
white, and the bottom is region labeling, where different segments correspond to different gray levels.

When selecting filter scales, the fixed integration scale is
generally larger than necessary. After the filter scales are de-
termined, we decrease the integration scale to diminish the
smoothing effect. As the integration scale decreases, features
tend to be less similar to the neighboring features, which
increases the noise level and, thus, reduces the gap between
σr and σr+1. We again examine the ratio σr / σr+1. For an
integration scale h, a ratio can be computed, which is denoted
by Rh. The integration scale is determined by

h = max{h : Rh < ω} (11)

where ω is a threshold. Although ω can be tuned to achieve the
desired smoothness of segmentation results, in our experiments,
a fixed value of 1.8 is used, and it works well.

V. EXPERIMENTAL RESULTS AND COMPARISONS

We first test our method on a set of GeoEye-1 images with a
spatial resolution of 0.5 m. The images have three bands (red,
green, and blue), and the red band is shown in the top row
in Fig. 2. For each image, we use three filters: the intensity
filter, LoG(s), and LoG(2s). Filter scale s and the integration
scale are determined using the automatic method described in
Section IV. The only free parameter is the number of segments,
which is set to 3, 2, and 3, respectively, for the three images.
The results are presented in Fig. 2, where the top row shows the
segment boundaries overlaid on the red-band images, and the
bottom row shows region labeling. In the left and middle
images, vegetation areas with heavy texture are well separated

from other areas. The third image contains an urban residential
area, which is challenging for segmentation due to high spectral
variance and irregular patterns. In our result, the main areas,
including buildings, roads, and vegetation, are clearly iden-
tifiable. Fig. 3 illustrates the estimated representative feature
corresponding to the building segment and five local spectral
histograms within building areas. For this image, the chosen
integration scale is 19× 19. It can be seen that the representa-
tive feature can describe the features from the same region. We
can observe that many inaccurate boundaries occur in shadow
areas. Addressing this problem would require prior knowledge.
These as well as other results not shown demonstrate that the
proposed method is successful in segmenting remote sensing
images based on spectral and texture features.

To systematically evaluate the performance of the proposed
method, we conduct experiments on an IKONOS image set
covering a complex scene, i.e., a 2 km × 2 km section of the city
of San Diego (CA) [25]. The data set includes a PAN image of
size 2004× 2004, which is commensurate with the 1-m spatial
resolution, and four-band (red, green, blue, and near infrared)
MS images of size 501× 501. The PAN image is shown in
Fig. 4(a). This two-resolution data set is processed using the
approach described in Section II, which first resizes the low-
resolution images and then use all the bands as input. We
choose a filterbank consisting of five filters, namely, the inten-
sity filter, LoG(s), LoG(2s), Gabor(s, 0◦), and Gabor(s, 90◦).
Filter scale s and the integration scale are automatically se-
lected. Because the PAN image contains the most detailed
spatial variations, only the PAN image is convolved with LoG
and Gabor filters to provide texture bands, for reducing memory
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Fig. 3. Illustration of local spectral histograms. (a) The third image in Fig. 2. White boxes indicate the windows for computing local spectral histograms. (b) The
solid line stands for the representative feature corresponding to the building segment, and dashed lines stand for the local spectral histograms computed from the
windows in Fig. 3(a). The spectral histogram includes the responses of nine filters. (The intensity filter and two LoG filters are applied to each of the three bands.)
Their corresponding histograms are separated by dotted lines.

Fig. 4. Experiments on IKONOS imagery. (a) A 1-m resolution PAN image with size 2004 × 2004. (b) Segmentation result using the proposed method.

requirements and computational time. Based on preliminary
trials, we set the number to 5, corresponding to the five major
land-cover types: roads, parking lots, buildings, trees, and grass.
The segmentation result is displayed in Fig. 4(b), where each
gray level indicates a distinct segment. As we can see, the major
areas of the image are clearly visible.

We compare our method with a recent segmentation method,
which is based on a hierarchical multiple Markov chain
(H-MMC) model [25]. This method first segments an image
into elementary regions with similar spatial and spectral char-
acteristics and then produces a sequence of nested segmentation
maps through merging the regions. The method is tested on
the same data set, which gives good results. For quantitative
evaluation, Gaetano et al. [25] generated the ground truth by
visual inspection. The original ground truth contains seven
classes: roads, large buildings, parking lots, small buildings,
green spots, grass, and trees. Since our method does not take
object sizes into consideration, we do not differentiate between
large buildings and small buildings or green spots and grass.

Thus, we merge seven classes in the ground truth into five
classes.

By matching the resulting segments with those in the ground
truth, we obtain a confusion matrix shown in Table I. Column
labels correspond to machine-generated segments, and row
labels correspond to classes in the ground truth. For example,
the cell in column 1 row 4 indicates that 3185 pixels in the road
segment correspond to (incorrectly) trees in the ground truth.
Diagonal entries give correctly labeled pixel numbers. Each
entry in the last column shows the corresponding diagonal entry
divided by the total pixel number in the corresponding row,
indicating how complete a particular class is identified. The last
row shows diagonal entries divided by the total pixel numbers
in the corresponding columns, indicating the correctness rate
for one segment. We also present the five-class result from the
H-MMC method,2 shown in parentheses; for conciseness, we

2The seven-class confusion matrix is reported in [25], from which the five-
class one can be easily obtained.
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TABLE I
CONFUSION MATRIX FOR FIVE-CLASS SEGMENTATION FROM THE PROPOSED METHOD AND THE H-MMC METHOD SHOWN IN PARENTHESES

TABLE II
OVERALL ACCURACY OF SEGMENTATION RESULTS USING DIFFERENT SUBSETS OF BANDS

only show the number of correctly segmented pixels and the
overall accuracy. As we can see, our method attains a higher
overall accuracy (64.7% versus 61.0%). The accuracy values
for roads and grass are particularly high, which have uniform
spectral and texture characteristics and, thus, are well seg-
mented by our method.

To verify that the better accuracy provided by the proposed
method is statistically significant, we conduct a statistical sig-
nificance test. We divide our segmentation result into 36 equal-
sized blocks and compute the accuracy rate of each block.
The null hypothesis is that the accuracy rate of the H-MMC
method (61.0%) is the mean of the 36 accuracy rates. We obtain
the p-value of 0.001, which is much smaller than 0.05 (5%
significance level), providing strong evidence for rejecting the
null hypothesis. Therefore, the increased accuracy rate from the
proposed method is statistically significant.

Our method produces segmentation based on spectral and
texture features. The results can be easily improved by incor-
porating additional information (e.g., shape and context). For
example, in our result, a large number of confusions occur
between parking lots and roads because of similar spectral and
texture features. Particularly, the highways in the middle of the
image, although well segmented, have the same segment labels
as the areas mostly corresponding to parking lots. This can
be corrected by a simple technique, which is to compute the
medial axis of each connected segment and assign those with
long medial axes and small associated radii to the road class
[26]. By doing so, the overall accuracy rate is boosted to 75.1%,
showing substantial improvement over the H-MMC method.

To show whether each spectral and texture band contributes
to the final segmentation, we exclude certain bands and apply
the same method. The overall accuracy rates in different cases
are summarized in Table II. In all cases, the accuracy is lower
than that when using all the bands. This result confirms that our

method makes effective use of the information from all bands
to produce segmentation.

As for computational time, the feature extraction step in our
algorithm, including filtering and spectral histogram computa-
tion, takes linear time with respect to the number of pixels. In
our case, we do not need to perform complete SVD. After the
eigenvalue decomposition of YYT , which is an M ×M ma-
trix (M is the feature dimension), we only need the first several
eigenvalues and the corresponding eigenvectors to construct
U′. Estimating representative features using k-means clustering
is also fast because the features are projected onto a low-
dimensional subspace, and the clusters are well grouped. Scale
selection needs to compute feature matrices and corresponding
SVD at different scale levels, which can be sped up by using
subsampled pixel locations. We implement the whole system
using MATLAB, and the experiment on the IKONOS image set
takes 150 s on a 2.6-GHz Intel processor.

VI. CONCLUSION

We have presented a new method for segmenting remote
sensing images based on spectral and texture features. We
use local spectral histograms to provide combined features.
By regarding each feature as a linear combination of several
representative features, we formulate the segmentation problem
as a multivariate linear regression, which can be solved by least
squares estimation. We have also proposed methods based on
SVD to automatically estimate representative features and se-
lect proper scales. The experimental results on different image
sets are encouraging.

The performance of our method can degrade when choos-
ing a large segment number to deal with a complex scene.
The reason is that with more representative features, the least
squares solution is more sensitive to noise, and the estimated
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combination weights might not correspond to actual coverage
fractions. In most cases, this problem can be tackled by a
divide-and-conquer strategy: We divide an image into blocks
containing fewer regions; segmentation of each block is indi-
vidually generated, and the final result is obtained by merging
the segments with similar representative features. However,
such a strategy would fail if a block still contains a multitude of
regions. A more general approach is to impose constraints on a
least squares solution, making it more robust to noise. We are
currently investigating this issue.
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