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ABSTRACT
Determining the number of buildings in aerial images is an
important problem because the information greatly benefits
applications such as population estimation, change detec-
tion, and urbanization monitoring. In this paper, we address
this problem by learning the relationship between low-level
image features and building counts. Building footprints from
public cartographic databases are used as labeled data. We
first extract straight line segments from images. A classifier
is then trained to identify line segments corresponding to
building edges. Although there exist mismatches between
resulting line segments and building edges, we observe a
strong linear relationship between building numbers and line
numbers for similar types of buildings. Based on this obser-
vation, we predict the building count for a given image using
the following method. We find top k images with the most
similar appearances from training samples and learn a linear
regression model from this image set. The building count is
computed based on the model. Our method avoids the diffi-
culty in building detection and produces reliable results on
large, diverse datasets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithms, Experimentation

Keywords
Building count, Aerial images, Straight line extraction

1. INTRODUCTION
The number of buildings in an area is highly desirable in-
formation in many geospatial related applications ranging
from disaster management to urban planning. An effective
and economical data source for acquiring such information
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is aerial images including satellite images and airborne im-
ages. A human interpreter can conveniently count build-
ings in images, but it is a tedious and time-consuming task.
To automate this process, one option is to employ building
detection methods that are designed to detect individual
buildings in aerial images. Unfortunately, despite decades
of research, reliably identifying individual buildings in di-
verse aerial scenes is still challenging [2]. The main reason is
that building appearances vary significantly not only due to
different roof materials, building designs, and lighting con-
ditions, but occlusions by shadows and other surrounding
objects. Published work on building detection generally es-
tablishes some prior criteria for building appearances and
identifies objects that satisfy the criteria [19, 17, 7, 13]. Al-
though showing promising performance on certain sample
images, such approaches have not been shown to work on
large datasets containing diverse scenes. Note that many
building detection methods utilize LiDAR data that pro-
vides 3D information and can achieve much more reliable
performance [15, 21, 1]. However, LiDAR data are consider-
ably more expensive than images. In this work, we will only
rely on optical images.

We approach the problem of counting buildings from a new
perspective. Instead of identifying buildings in images, we
propose to learn the relationship between building counts
and low level features and infer building counts directly
based on low level features. In particular, we use straight
line segments as the low-level features because buildings are
typically characterized by straight edges formed by the con-
trast between building roofs and other objects. By using
building footprints from public cartographic resources as la-
beled data, we adaptively learn a linear regression model to
predict building counts. Our strategy has two major ad-
vantages. First, low-level features in images are much eas-
ier and more reliable to extract than high-level information
such as individual buildings [9]. Second, we can leverage
a massive amount of ancillary data to apply our method
to very large-scale datasets. Unlike many machine learning
tasks that suffer from insufficient labeled data, public carto-
graphic databases provide abundant human-labeled building
footprints that are easily accessible. Exploiting such data to
enhance image understanding capabilities has cultivated a
number of recent research efforts. [10, 12, 20].

The contributions of this work can be summarized as follows.

• We propose an improved line segment extraction method.



The method is computationally efficient and produces
lines well aligned with edges even when an edge has a
low contrast and appears noisy.

• After collecting a large number of samples, we make
an important observation that the number of buildings
is linearly correlated to the number of extracted line
segments when buildings have similar appearances.

• We design a classification method that identifies line
segments corresponding to building edges based on im-
age appearances of surrounding areas.

• We develop a method to predict building counts by
learning a linear regression model from similar images.
The method counts buildings accurately for images
containing diverse types of buildings.

The rest of the paper is organized as follows. Section 2
describes the data sources used in this work. Section 3
presents our line extraction method. The method for esti-
mating building counts are discussed in detail in Section 4.
In Section 5 we conduct experiments on large datasets and
provide quantitative evaluation. We conclude in Section 6.

2. DATA SOURCES AND PREPROCESSING
In our work, we use geo-referenced orthorectified images
with 3 color bands. Although more spectral bands can po-
tentially improve results, in this work we focus on RGB
color images. In order to develop a learning method to
count buildings, we need labeled data for training and test-
ing. OpenStreetMap (OSM)1 provides an ideal data source
for such a purpose. OSM maps are publicly available and
has detailed building footprints for many cities around the
world. Moreover, as a volunteered geographic information
platform, OSM has over one million contributors to create
and edit geographic data [5], and therefore the map coverage
will keep expanding.

Because OSM maps are generated using data sources differ-
ent from our images, there may exist inconsistency between
maps and images. One type of inconsistencies is mismatched
features. For example, a map shows a building which is
not in the corresponding image, or vice versa. This issue
is mostly caused by the time difference between maps and
images. Such inconsistencies are often limited in properly
selected datasets.

Another type of inconsistency is misalignments between maps
and images, which results from different projections and ac-
curacy levels among data sources. Figure 1(a) shows an ex-
ample of building footprints overlaid with the corresponding
image. There are noticeable misalignments between building
footprints and the image. Such misalignments lead to inac-
curate training samples for line classification and building
count estimation and need to be corrected.

We apply a simple preprocessing to reduce the inconsisten-
cies. We assume that in a local neighborhood the build-
ing footprints can be aligned with image content through
a translation. Despite the lack of theoretical justification,

1http://www.openstreetmap.org/

(a) (b)

Figure 1: Misalignment correction. (a) Building
footprints overlaid with the corresponding images.
(b) The result after correction.

this assumption leads to satisfactory results in practice. For
an image window containing closely located buildings, we
compute the image gradient and perform a cross-correlation
between building footprints and gradient magnitude. If the
building footprints and images are correctly aligned, the cor-
relation coefficient should reach its maximum. The correc-
tion result of the data in the example can be seen in Fig-
ure 1(b).

3. STRAIGHT LINE EXTRACTION
It is a common practice to rely on some low level image fea-
tures for finding buildings, such as corners and edges [11,
14]. In this work, we use straight line segments because
a major discriminative characteristic of buildings from an
aerial view are straight edges. For line segment extraction,
Burns et al. proposed an important method based on line
support regions [3], where each connected region with sim-
ilar gradient orientations is segmented and line parameters
are estimated based on the region. In the paper, we follow
this framework and design a new approach to estimate line
parameters, which generates accurate results with enhanced
efficiency.

We use a 7 × 7 derivative of Gaussian filter with σ equal
to 1.2 to compute derivatives in the horizontal and vertical
directions, which provide the gradient direction and mag-
nitude at each pixel. For pixels with gradient magnitude
larger than a threshold, their gradient directions are quan-
tized into 8 equally divided bins between 0◦ and 360◦. Each
connected region containing pixels with the same directions
forms a line support region (i.e., a region containing a line
segment). The direction quantization may cause a line to be
broken. To address this issue, the directions are quantized
into another 8 bins between 22.5◦ and (360 + 22.5)◦, and a
different set of line support regions are produced based on
the quantization. The lines extracted from two sets of line
support regions are integrated through a voting scheme.

Given a line support region, we need to determine the lo-
cation, length, and orientation of a line segment. In Burns’
method, line orientations are estimated by fitting planes to
pixel intensities in line support regions, and locations and
lengths are obtained by intersecting a horizontal plane with
the fitted planes. This method gives accurate results but is



computationally expensive. In order to improve efficiency, a
number of studies estimate line parameters based on bound-
ary shapes of line support regions [16, 18]. However, region
boundaries do not always reflect the actual orientations and
locations of lines. For example, a line support region can
be elongated perpendicularly to the actual line in the re-
gion when the edge is short and blurred. To overcome the
drawbacks while keeping a low computational cost, we ex-
ploit the technique of Harris edge and corner detector [6] to
determine line orientations. For a line support region, if we
shift the region and compute the pixel difference, the largest
difference occurs when the shift is perpendicular to the main
edge in the region, and the smallest difference occurs when
it is along the edge, which corresponds the line orientation.
We construct a structure tensor

A =

[ ∑
W I2x

∑
W IxIy∑

W IxIy
∑

W I2y

]
, (1)

where Ix and Iy are the derivatives in horizontal and ver-
tical directions in a line support region W . The shift vec-
tor resulting in smallest difference, which indicates the line
orientation, is the eigenvector corresponding to the smaller
eigenvalues of A. Such a line orientation is derived from the
gradients of all pixels in the region and thus is more robust
to noise.

After obtaining the orientation, we need to locate the line
segment such that it is best aligned with the edge in the line
support region. Here we examine the overall gradient mag-
nitude a line passes and choose the one that gives the max-
imum value. We use a fast implementation based on Hough
transform. A line is represented as r = x cos θ + y sin θ,
where θ can be calculated from the line orientation. Each
pixel location (x, y) in the line support region is plugged
into the equation to obtain an r value, which is assigned
to a quantization bin with a weight of its gradient magni-
tude. The bin with the maximum value gives the desired r
value, which together with the orientation defines a unique
line. The part of the line overlapping with the line support
region determines the length of the line segment.

Figure 2 shows the lines extracted using our method and
the method in [16], which is based on line support regions
and applies Fourier transform to region boundaries for line
parameter estimation. It can be seen that the lines in our
results are better aligned with the edges, especially when
the edges are blurred and noisy. The two methods have
comparable computation time.

4. LEARNING TO COUNT BUILDINGS
Our goal is to learn the relationship between line segments
and buildings, which is utilized to estimate building counts.
It is a supervised learning with OSM building footprints used
as labeled data. We now describe the method in detail.

4.1 Line-building relationship
To investigate the relationship between lines and buildings,
we conduct the following experiment. We collect over 2000
building images of 0.6 meter resolution from different places
in the world. The size of each image is 150×150 pixels, corre-
sponding to a 60m×60m area. Such an area generally con-
tains multiple buildings with approximately homogeneous
structures. For each image, we extract line segments and

(a) (b) (c)

Figure 2: Comparison of line segment extraction re-
sults on two images. (a) Input images. (b) The
results from [16]. (c) Our results.
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Figure 3: Scatter plot of line and building numbers.

manually count buildings. We plot the number of line seg-
ments and the number of building for all images, as shown
in Figure 3. There is no clear relationship between the two
variables.

Next, we perform the same analysis on images with similar
buildings. We select a number of exemplar images with dif-
ferent building appearances and assign other images to their
similar images. To measure image similarity, we use spec-
tral histograms as image descriptors, which consist of his-
tograms of different filter responses [8]. Spectral histograms
have shown to be capable of differentiating image appear-
ances with properly selected filters. We use RGB color bands
and filter responses of three Laplacian of Gaussian filters to
compute spectral histograms and Euclidean distance as a
distance metric. As a result, images are grouped based on
appearances. We have also experimented with bag-of-words
representations built on SIFT features [4], but the results of
spectral histograms are more visually meaningful. We plot
the number of line segments and the number of buildings
for images in each group. Figure 4 shows the plots of three
groups. Four example images from each group are displayed
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Figure 4: Scatter plots of line and building numbers for different image groups.

below each plot.

A striking observation from Figure 4 is that there is a strong
linear relationship between line and building numbers. We
calculate the Pearson correlation coefficient, which measures
the strength of the linear relationship between two variables
and equals to 1 in the case of a perfect linear relationship.
The Pearson correlation coefficients for the three groups are
0.85, 0.91, and 0.86, respectively. Linear relationships are
also observed for other groups. The main reason for such
a line-building relationship is that buildings with similar
structures tend to exhibit similar numbers of edges from an
aerial view. Although extracted line segments do not per-
fectly match building edges, the mismatches appear consis-
tent and do not severely affect the linear relationship. There
are a few images that noticeably deviate from the linear re-
lationship. We find that in those images many non-building
line segments are counted, which often correspond to roads
and trees. A stronger linear relationship can be expected if
non-building line segments are filtered out.

Based on this observation, we use a simple linear regres-
sion model to associate building numbers with line segment
numbers, y = βx, where x is the line segment number, y
the building count, and β the regression coefficient. This
model provides an effective solution for counting buildings
with similar appearances. We only need to select several
small areas to manually count building numbers and extract
straight line segments, which are used to estimate β through
the least square approach. The building number in the en-
tire area is equal to the number of extracted line segments
multiplied by β.

Another observation we have from Figure 4 is that for differ-
ent groups the line-to-building ratio is different. That is, the
linear regression models may have different regression coef-

ficients for different types of buildings. For example, for the
leftmost group in the figure the building number increases
slowly as the line number increases because each building
correspond to more lines in that group. Therefore, we can-
not apply a single model to all types of buildings.

4.2 Line segment classification
Line segments from non-building areas should not contribute
to any building counts. Removing those line segments can
strengthen the linear relationship between line segment num-
bers and building counts. Here we aim to identify line seg-
ments corresponding to building edges. We train a multi-
layer perceptron (MLP) to classify line segments based on
surrounding image appearances.

Based on the line segments extracted from images and the
corresponding building footprints (with alignments corrected
as described in Section 3), we label each line segment as 1 if
its maximum distance to a building edge is smaller than 3
meters and half its length and 0 otherwise. The feature used
for classification is spectral histograms. Note that spectral
histograms can be used to compare image content regard-
less of region sizes. For each line segment, the feature is
computed from the region within a certain distance to the
line segment. A distinctive attribute of building edges is
co-occurrence of perpendicular edges. To encode such infor-
mation in the classifier, we convert RGB values to grayscale
values and apply two derivative of Gaussian filters, one with
the same orientation as the line segment and the other per-
pendicular to the line segment. The two filter responses to-
gether with RGB color bands are used to compute spectral
histograms, where each band is represented by a histogram
with 11 equally divided bins. We use two neighborhood sizes
to capture information at multiple scales. The MLP has 110
input nodes to take all feature dimensions, one hidden layer
with 70 nodes, and 1 output node. Since building lines are
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Figure 5: Line segment classification. (a) Left: ex-
tracted line segments. Right: Line segments classi-
fied as building lines. (b) and (c) Scatter plots of line
and building numbers before and after line segment
classification.

often much fewer than non-building lines, the errors dur-
ing training are weighted based on the size ratio between
two classes so that the result is not biased toward the large
class. After training, the MLP classifier gives the posterior
probability of a line segment belonging to building edges.

Figure 5(a) illustrates the result of line segment classification
on an image. Line segments in non-building areas are greatly
reduced. Figure 5(b) and (c) show two scatter plots of line
and building numbers for one of the image groups mentioned
in Section 4.1, where the number of filtered line segments
has a higher degree of linear dependence to the building
number. The Pearson correlation coefficient increases from
0.89 to 0.92 by filtering line segments.

4.3 Building count estimation
As discussed earlier, a single linear regression model can-
not apply to different types of buildings. To deal with this

issue, we propose to select images similar to the input im-
age from training samples and establish a linear regression
model based on similar images to estimate building counts.
Training samples comprise images in the training set, corre-
sponding building counts obtained from building footprints,
and line segments extracted from the images. To measure
image similarity, we use spectral histograms as image de-
scriptors and Euclidean distance as a distance metric. To
compute spectral histograms, we use RGB color bands and
filter responses of three Laplacian of Gaussian filters with
different σ values. After obtaining the K most similar im-
ages from the training pool, their line segment numbers and
building counts are taken to estimate the regression coeffi-
cient using the least-squares approach. Line segments are
extracted from the input image and filtered by the trained
MLP. The building number of the input image is immedi-
ately obtained based on the regression coefficient and the
line segment number.

We use a method based onK-nearest-neighbor (K-NN) search
to adaptively learn a line-building relationship because such
a method is well suited for our task. Since there are poten-
tially infinite types of buildings, learning a model for each
type is intractable. K-NN can naturally deal with a very
large number of classes. Moreover, new training samples
can be easily added without the need of retraining.

The complete procedure of our method can be described as
the following three steps.

1. Compile a training set that includes images and the
corresponding building footprints. Building counts of
each image is determined based building footprints.

2. Extract line segments for images in the training set.
Label each line segment based on whether it is aligned
with edges in building footprints. Use spectral his-
tograms as features to train a MLP for line segment
classification. Record the number of line segments fil-
tered by the MLP.

3. Given an input image, extract line segments and count
those classified as building edges by the trained MLP.
Find the K most similar images from the training
set and use their line numbers and building counts to
derive a linear regression model, which produces the
building count based on the line segment number.

5. EXPERIMENTS
We conduct experiments on two datasets, which will be re-
ferred to as Dataset I and Dataset II. Two datasets corre-
spond to very different geographic areas.

Dataset I covers the urban areas in San Francisco, CA. We
collect two 5000×5000 image tiles with spatial resolution of
0.3 meters. We randomly select 400 images of size 250×250
within each image tile. Two sets of images are used for train-
ing and testing respectively. The OSM building footprints
for the corresponding areas are quite complete. When count-
ing buildings on maps, we count a partial building as one if
the part contains more than half area of the entire building
or an area larger than 50 square meters. According to the
map data, the number of buildings in these images ranges



Table 1: Percentage of correctly counted images
with different error tolerance for Dataset I

Error tolerance 2 3 4 5
Accuracy 66.1% 79.0% 88.6% 92.9%

Table 2: Average count error with different K values
on Dataset I

K 3 4 5 6
Count error 3.08 2.78 2.51 2.51

from 0 to 31, and the average is 12. In the experiment,
pixels with gradient magnitude larger than 40 are selected
to identify line support regions, and line segments shorter
than 3 meters are removed in order to reduce noise. For line
segment classification, we use the MATLAB neural network
toolbox to construct and train a MLP. For searching K most
similar images, K is set to 5.

We show some example images from the test set and their
building counts from map data and our method in Fig-
ure 6(a). The counts from our method are rounded to in-
tegers. As can be seen, building appearances vary to a
large extent. Moreover, many buildings are adjacent to each
other, where individual buildings are very difficult to detect.
The counts from our method are very close to those from
maps. To better show the diversity of scenes, we apply the
method to two areas corresponding to highly different city
blocks. Each area is divided into 250 × 250 image windows
for processing, and the total count is obtained by aggregat-
ing the results. Line segments are extracted for the entire
area. For each image window, we only count the line seg-
ments with the centroids inside the window so that large
buildings with long line segments are not double counted.
The results are shown in Figure 7.

To quantitatively measure the results, we calculate the count
error by comparing the counts from our method and maps.
The average count error is 2.51. To provide a more de-
tailed measurement, we compute the percentage of correctly
counted images at different levels of error tolerance (the
maximum allowable deviation from the count based on maps),
which are reported in Table 1. Our method produces cor-
rect counts for 66.1% images with an error tolerance of 2.
The accuracy rate reaches 92.9% with an error tolerance of
5. We also calculate the average count errors using different
K values in K-NN search (see Table 2). We can see that the
results are not overly sensitive to this parameter value.

Dataset II covers the small city of Kissidougou in southern
Guinea. The spatial resolution of images is 0.6 meters. We
use a 4500 × 2550 image tile corresponding to the south
part of the city for training and a 4500 × 3900 image tile
corresponding to the north part for testing. We randomly
select 510 images from the training image tile and 780 images
from the test image tile, where each image is of size 150×150
pixels. We use the same parameter setting as for Dataset
I except adjusting the gradient magnitude threshold to 20
because of the different image resolution and quality. For
this dataset, our counting result has an average count error
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Figure 9: Accuracy rates of the SU and proposed
methods.

of 1.73. Example results are presented in Figure 6(b). We
also select two different areas and give the total counts, as
shown in Figure 8.

We do not find any previous work that explicitly aims at
counting buildings from images. However, this task is closely
related to building detection. If buildings in an image are
detected, counting buildings is trivial. On the other hand,
if we apply our method to each small window of an image
so that the counts are localized at a fine scale, the result
is close to that of building detection. For comparison, we
select a leading building detection method proposed by Sir-
macek and Unsalan [13], which will be referred to as the
SU method. The method extracts SIFT keypoints and con-
structs graphs based on the keypoints. The buildings are
identified through subgraph matching, which can handle oc-
cluded buildings. We use the code distributed by the au-
thors.

Since the SU method cannot detect buildings that are closely
spaced, it fails to produce reasonable results for Dataset I
that contains dense buildings. We apply the SU method to
Dataset II and calculate the percentage of correctly counted
images as described earlier. Figure 9 presents the plot of
the accuracy rates for both methods. As can be seen, our
method outperforms the SU method by a significant mar-
gin. By examining the results, we find that the SU method
tends to miss buildings with a low contrast to the surround-
ing areas because there is often no SIFT feature extracted
for those buildings. In our method, line segments can be ex-
tracted for those buildings and they contribute to the final
count.

6. CONCLUSIONS
We have presented a method that automatically counts build-
ings in aerial images. We observe that the number of build-
ings in images are linearly correlated to the line segment
number. By using building footprints from public carto-
graphic databases as labeled data, we adaptively learn a lin-
ear regression model to estimate building counts in a given
image. We test the method on two large datasets containing
diverse building scenes and obtain very promising results.
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Figure 6: Example building count results for individual image windows. (a) Dataset I. (b) Dataset II.
Buildings counts from maps and our automatic method are shown below each image. M stands for maps,
and A our automatic method.
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Figure 7: Building count results for different city blocks in Dataset I.
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Figure 8: Building count results for different areas in Dataset II.



There are several directions for future work. First, based on
the experiments we find that many incorrect counts come
from images containing multiple types of buildings, where
the learned model cannot correctly describe the line-building
relationship. To reduce such errors, a plausible solution is to
first segment the image based on texture information so that
similar buildings form a segment and then estimate build-
ing counts for each segment. The choice of segmentation
methods needs to be investigated. Second, the output of
the current method is the number of buildings. In future
studies, we plan to derive more information for buildings
based on low-level features. For example, it appears feasible
to estimate building sizes based on spatial distributions of
line segments.
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