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Factorization-Based Texture Segmentation
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Abstract— This paper introduces a factorization-based
approach that efficiently segments textured images. We use local
spectral histograms as features, and construct an M × N feature
matrix using M-dimensional feature vectors in an N-pixel image.
Based on the observation that each feature can be approximated
by a linear combination of several representative features, we
factor the feature matrix into two matrices—one consisting
of the representative features and the other containing the
weights of representative features at each pixel used for linear
combination. The factorization method is based on singular
value decomposition and nonnegative matrix factorization. The
method uses local spectral histograms to discriminate region
appearances in a computationally efficient way and at the same
time accurately localizes region boundaries. The experiments
conducted on public segmentation data sets show the promise
of this simple yet powerful approach.

Index Terms— Matrix factorization, texture segmentation,
spectral histogram.

I. INTRODUCTION

IMAGE segmentation is a critical task for a wide range of
applications including autonomous robots, remote sensing,

and medical imaging. In this paper, we focus on segmentation
of textured images, which partitions an image into a number
of regions with similar texture appearance. As segmentation
serves as an initial step for higher level image analysis tasks,
such as recognition and classification, we aim to develop
segmentation algorithms with low computational complexity.
In addition, we do not use object-specific or scene-specific
knowledge, which are typically not available.

Texture segmentation literature addresses two main issues:
1) finding an image model that defines region homogeneity,
and 2) designing a strategy for producing segments. These
two issues should not be treated independently. A successful
segmentation methodology generally couples a good image
model with an effective segmentation strategy.

A broad family of texture segmentation approaches is to
extract features from local image patches and then feed them to
general clustering or segmentation algorithms. Various features
are designed to characterize texture appearance. Widely used
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ones are based on filtering [1], [2], which uses filterbanks to
decompose an image into a set of sub-bands, and statistical
modeling [3], [4], which characterizes texture as resulting from
some underlying probability distributions.

Recent work on texture analysis shows an emerging
consensus that an image should first be convolved with a bank
of filters [5]. Texture descriptors constructed based on local
distributions of filter responses show promising performance
for texture discrimination [6], [7]. Such descriptors can
be coupled with well-established segmentation methods to
segment textured images [8], [9]. This treatment, however, has
two main problems. The first problem stems from the high
feature dimensionality of multiple filter responses and their
distribution representations. Many widely used segmentation
approaches, e.g., graph partitioning [10], curve evolution [11],
and mean shift [12], heavily rely on measuring the distance
among local features, and thus applying them to the texture
descriptors requires a high computational cost for distance
calculation [13], [14]. Moreover, it is always a thorny issue
to select a proper distance measure for a high-dimensional
space. Although dimensionality reduction techniques can be
utilized, whether a technique is suitable for a feature often
lacks theoretical justification.

The second problem is attributed to the texture descriptors
generated from the image windows across boundaries.
Such windows generate uncharacteristic features, which causes
difficulty in accurately localizing region boundaries [9].
In order to address this problem, quadrant filters and other
similar strategies are often employed, which compute features
from shifted local windows around a pixel [15], [16]. Another
popular technique is to use local windows of different sizes,
also referred to as scales [5], [17]. Boundaries are then
determined by analyzing information across scales. Despite
their success, these methods are ad hoc to some extent
(e.g., using a discrete set of shifts), or require additional
computation to analyze multiscale information. In such
situations, it would be desirable to find a segmentation
approach that can utilize the texture descriptors to discriminate
region appearances in a computationally efficient way and at
the same time accurately localize region boundaries.

In this paper, we propose a factorization-based segmentation
method. The feature we use in this paper is a particular
form of texture descriptors based on local distribution of filter
responses, called local spectral histograms [18]. The proposed
method represents an image by an M × N feature matrix,
which contains M-dimensional feature vectors computed from
N pixels. We regard the feature at each pixel as a linear
combination of representative features, which encodes
a natural criterion to identify boundaries. Consequently, the
feature matrix is expressed by a product of two matrices,
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which respectively contain representative features and their
combination weights per pixel. The combination weights indi-
cate segment ownership for each pixel. We use singular value
decomposition and nonnegative matrix factorization to factor
the feature matrix, which leads to accurate segmentation.

The remainder of the paper is organized as follows.
In Section II, we present the factorization based image
model, which uses local spectral histogram representation.
Section III presents our segmentation algorithm in detail.
In Section IV, we show experimental results on different
segmentation datasets. In Section V, we discuss the difference
between the proposed method and other factorization-based
methods in terms of methodology and performance. Finally,
we conclude in Section VI.

II. FACTORIZATION BASED IMAGE MODEL

A. Local Spectral Histograms

For a window W in an input image, a set of filter responses
is computed through convolution with a chosen bank of filters
{F {α}, α = 1, 2, . . . , K }. For a sub-band image W{α}, the
corresponding histogram is denoted as H (α)

W .1 The spectral
histogram with respect to a chosen filterbank is then defined as:

HW = 1

|W| (H (1)
W , H (2)

W , . . . , H (K )
W ), (1)

where | · | denotes cardinality. The size of the window
is referred to as an integration scale. Spectral histograms
capture local spatial patterns via filtering and global impres-
sion through histograms. It has been shown in [18] that when
the filters are selected properly, the spectral histogram can
uniquely represent an arbitrary texture appearance up to a
translation.

A local spectral histogram is computed over the square
window centered at each pixel location. In order to obtain
meaningful features, the integration scale has to be large
enough. Thus, computing all local histograms is computa-
tionally expensive. To address this issue, we use the integral
images to speed up the histogram generation process. With
integral histograms computed, any local spectral histogram can
be obtained by three vector arithmetic operations regardless of
window size. A detailed description of the fast implementation
can be found in [16].

B. Image Model

Without the loss of generality, let us consider an image
as composed of homogenously textured regions as illustrated
in Fig. 1(a). We assume that the spectral histograms within
homogeneous regions are approximately constant. Local
spectral histograms representative of each region can be
computed from windows inside each region. Let us consider
only the intensity filter for the time being, which gives the
intensity value of each pixel as the filter response. Then the
local spectral histogram is equivalent to the histogram of a
local window. Under the assumption of spectral histogram
constancy within the region, the local histogram of pixel A can

1Based on previous studies [18], we use eleven equal-width bins for each
filter response.

Fig. 1. Linear combination of representative features. (a) A textured image
with size 320 × 320. The feature at pixel A can be approximated by the
weighted sum of two neighboring representative features. (b) Segmentation
result using least squares estimation.

be well approximated by the weighted sum of representative
histograms of two neighboring regions, where the weights
correspond to area coverage within the window and thus indi-
cate which region pixel A belongs to. We can have the same
analysis for other filter responses, as long as the scales of filters
are not so large to cause significantly distorted histograms
near the boundaries. Because the purpose of filtering in local
spectral histogram is to capture elementary patterns, the chosen
filters generally have small scales.

By extending the above analysis, the feature of each pixel
can be regarded as the linear combination of all the represen-
tative features weighted by the corresponding area coverage.
In the case when a window is completely within one region,
the weight of the representative feature for that region is close
to one, while the other weights are close to zero.

Given an image with N pixels and feature dimensionality
of M , all the feature vectors can be compiled into an
M × N matrix, Y. Assuming that there are L representative
features, the image model can be expressed as:

Y = Zβ + ε, (2)

where Z is an M ×L matrix whose columns are representative
features, β is an L × N matrix whose columns are weight
vectors, and ε is model error.

This image model has been studied from a multivariate
linear regression perspective in [19]. The representative feature
matrix Z can be computed from manually selected windows
within each homogeneous region, and β is then estimated by
least squares estimation:

β̂ = (ZT Z)−1ZT Y. (3)

Segmentation is obtained by examining β̂ – each pixel is
assigned to the segment where the corresponding representa-
tive feature has the largest weight. For example, we compute
three representative features from pixels around the center
of each region in Fig. 1(a) and obtain the segmentation
result shown in Fig. 1(b). Here we use an intensity filter
and two LoG (Laplacian of Gaussian) filters with the scale
values of 0.5 and 1.0 to compute local spectral histograms.
The integration scale is chosen at 19 × 19. It can be seen that
the boundaries are accurately localized.
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III. FACTORIZATION BASED SEGMENTATION

For fully automatic segmentation, both Z and β are
unknowns, and we aim to estimate these two matrices by
factoring Y. In this section, we present the factorization
algorithm, which can produce segmentation with high
accuracy and efficiency.

A. Low Rank Approximation

For a unique solution in (2) to exist, Z has to be full rank
so that (ZT Z) in (3) is invertible. Thus, the rank of Z is the
number of columns, i.e., representative features (the feature
dimension is generally larger than the number of representative
features). In other words, representative features have to be
linearly independent in order to have a unique segmentation
solution. Since each feature is a linear combination of rep-
resentative features, the rank of the feature matrix Y should
be equal to the rank of Z. However, due to image noise, the
matrix Y tends to be full rank. Hence, the noise-free feature
matrix should be a matrix that has the rank equal to the number
of representative features.

A typical solution to low rank approximation is singular
value decomposition (SVD) [20], where the feature matrix is
decomposed into:

Y = U�VT, (4)

Here U and V are orthogonal matrices of size M × M and
N × N , respectively. The columns of U are the eigenvectors
of matrix YYT, and the columns of V are the eigenvectors
of matrix YT Y. � is an M × N rectangular diagonal matrix,
where the diagonal terms, called singular values, are the square
roots of the eigenvalues of the matrix YYT, or YT Y. The
singular values are sorted in a nonincreasing order. The well-
known Eckart-Young theorem [21] states that the best rank-r
approximation to Y, in the least-squares sense, has the same
form of SVD, except that � is replaced with a new matrix
that contains only the first r singular values (the other singular
values are replaced by zero).

We need to determine the underlying rank of the feature
matrix, which corresponds to the number of representative
features, or segments.2 Let Y′ be the approximated matrix of
rank-r . The approximation error can be obtained as follows:

||Y − Y′|| =
√
√
√
√

M
∑

i=r+1

σ 2
i , (5)

where || · || denotes the Frobenius norm, which is the square
root of the sum of all squared matrix entries. σ1, σ2, ..., σM

are singular values in a nonincreasing order. Therefore, the
error corresponds to the discarded singular values in the
approximation. We can determine the number of segments
by thresholding the error. That is, we estimate the segment
number n as

n = min

⎧

⎨

⎩
i : 1

N

√
√
√
√

M
∑

i+1

σ 2
i < ω

⎫

⎬

⎭
, (6)

2A representative feature corresponds to a segment. The connectivity of
segments is not considered here, which can be achieved by postprocessing.

where ω is a pre-specified threshold that depends on the noise
level of images and specific tasks.

B. SVD Based Solution

Assuming that the first r singular values are chosen
using (6), (4) can be rewritten as:

Y′ = U′�′V′T, (7)

where U′ and V′ consist of the first r columns of U and V in
the SVD of matrix Y, respectively. �′ is an r × r matrix with
the largest r singular values on the diagonal. If we define
Z1 = U′ and β1 = �′V′T, the two matrices Z1 and β1
are of the same size as the matrices Z and β in (2). Thus,
Z1 and β1 can serve as a solution in the model in (2), which
simultaneously ensures a minimum least square error due to
the Eckart-Young theorem. However, the decomposition is not
unique due to the fact that

Y′ = Z1β1 = Z1QQ−1β1, (8)

where Q can be any invertible square matrix, suggesting
that (Z1Q) and (Q−1β1) can also be possible solutions.
Z1 and β1 generally differ from the desired matrices that
represent underlying representative features and combination
weights. Although the decomposition cannot directly give a
valid solution, it leads to a striking fact that the representative
features should be in the form of Z1Q, i.e., a linear trans-
formation of Z1. Likewise, combination weights should be
a linear transformation of β1.

In order to obtain a segmentation result, we need to
estimate Q. Based on the fact that the desired matrix of
representative features is a linear transformation of Z1,
we know that the representative features should lie in an
r -dimensional subspace spanned by the columns of Z1.
Since Z1 forms an orthonormal basis, each column of Q
corresponds to the Cartesian coordinate of each representative
feature in the subspace. In the absence of noise, all other
features also lie in this subspace because they are certain
linear combinations of representative features. Meanwhile,
there exist additional properties of the feature distribution
owing to constraints on combination weights. Because the
combination weights of a feature represent the coverage frac-
tion of its local window, the weights should be nonnegative,
and the sum of weights for each feature should be one. These
two conditions restrict the features within a convex set with
the vertices defined by representative features. In the case
of r representative features, all features lie in an r -vertex
convex hull, or an (r −1)-simplex, in an r -dimensional space.

As an illustration, we project all the features from the image
in Fig. 1(a) onto the 3D space spanned by Z1, and show the
scatterplot in Fig. 2(a). The data points are downsampled in
order to better show the distribution. It is clear that the features
approximately lie in a triangle. Most points are concentrated
on the vertices, which correspond to the features inside each
region, and the points along the edges correspond to the
features near region boundaries. There are some points within
the triangle, which correspond to the features computed over
windows straddling all three regions.
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Fig. 2. Scatterplot of features in subspace. (a) Scatterplot of features projected
onto the 3D subspace. (b) Scatterplot after removing features with high
edgeness.

Based on the above analysis, each representative feature
in the subspace (i.e., a column of Q) should be a vertex
of the underlying simplex and close to other features from
the same region so that it can be representative. We use
the following method to find such r points. After projecting
all the features onto the subspace, we select the first point e1
as the feature with the maximum length; then, the j th selected
point e j is the feature with the largest distance to the set
Sj−1 = {e1, e2, . . . , e j−1}. The distance between a feature
k and Sj−1, is defined as d(k, Sj−1) = min{d(k, e1),
d(k, e2), . . . , d(k, e j−1)}. This procedure selects points near
the simplex vertices. Then, we apply k-means clustering with
the selected points as initialization, which moves each point
to its cluster center. The resulting points give columns of Q.
After obtaining Q, β can be easily solved based on (8), which
provides the segmentation result. As feature points are in a
Cartesian space, the Euclidean distance is used as a metric.

Noisy features near region boundaries can generate points
far outside the simplex, which results in selected points poorly
approximating underlying representative features. To address
this issue, we retain only features inside regions by computing
an edge indicator. The indicator value of a feature at (x, y) is
chosen as the sum of the two feature distances between the
pixel locations <(x + h, y), (x − h, y)> and <(x, y + h),
(x, y − h)>, where h is chosen as half of the window
side length. The features with low edgeness are expected to
reside within the homogenous regions. Fig. 2(b) shows the
features with low edgeness, where only points near vertices
are preserved.

The representative feature matrix can alternatively be
estimated through k-means clustering in the original feature
space. However, the method presented above provides three
major advantages. First, given the segment number, the
factored matrices from SVD guarantee minimum error. As we
explained earlier, the representative features from the subspace
constructed by Z1 give the best possible rank-r approximation
that minimizes least square error, due to the Eckart-Young
theorem. In contrast, the representative features from direct
clustering are not guaranteed to lie in that subspace, and
hence do not assure minimum error. Secondly, the presented
method is much more efficient because feature dimensionality
is greatly reduced by subspace projection. An original feature
often has over 100 dimensions, which can be reduced to the
number of segments (usually less than 10). Last, k-means
clustering is sensitive to initialization, while starting from

Fig. 3. Segmentation with nonnegativity constraint. (a) Synthetic image
containing seven textures in 16 patches. (b) Segmentation result from the
SVD-based solution. (c) Segmentation result with the nonnegativity constraint.

points near simplex vertices provides good initialization and
produces stable results.

C. Nonnegativity Constraint

As we noted earlier, according to their interpretations, the
combination weights should have two constraints, nonnegativ-
ity and full additivity (sum-to-one). However, the algorithm
presented above does not enforce the combination weights
to obey the constraints. When the features are very noisy,
estimated combination weights can violate the constraints to a
large extent, leading to incorrect segmentation. This problem
is especially severe when the number of representative features
is relatively large. Fig. 3(a) shows an image containing seven
textures in 16 patches. The segmentation results from the
unconstrained solution are shown in Fig. 3(b), where a large
number of pixels are incorrectly segmented.

For a more accurate solution, we need to impose the
constraints when estimating combination weights. This can
be treated as constrained least squares estimation given the
representative features from the SVD based solution. While a
closed form solution exists for imposing full additivity [22],
we find that the combination weights from the SVD-based
solution are close to full additivity and the segmentation
results with and without full additivity are very similar. The
nonnegativity constraint can be achieved by a nonnegative least
squares (NNLS) algorithm [23]. Our experiments show that
this algorithm indeed improves segmentation accuracy, but the
computation time is increased significantly, which remains a
major limitation of the NNLS algorithm.

Alternating Least Squares (ALS) algorithms are proposed
to efficiently provide a low rank approximation with nonneg-
ative factored matrices [24]. ALS algorithms start from an
initial matrix A and compute a matrix B using least squares
estimation. After setting negative elements in B to zero,
A is recomputed using least squares estimation. The operations
are repeated in an alternating fashion. ALS algorithms have
been applied to nonnegative matrix factorization problems and
shown to be effective and fast in a number of studies [24].
ALS algorithms can be readily applied to our factorization
problem, initialized with the representative features Z obtained
from the SVD based solution. Based on the previous analysis,
the initial Z should be close to the desired solution, hence a
good initialization. ALS algorithms will converge to a solution
near the initial Z and also enforce the combination weights to
be nonnegative.



3492 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

We employ a modified ALS algorithm [25], which
minimizes the following function

f (Z,β) = ||Y − Zβ||2 + λ1||Z||2 + λ2||β||2, (9)

where Z and β have to be nonnegative and λ1 and λ2 are
small regularization parameters. The regularization terms are
used to penalize the factored matrices with very large norms.
For all the experiments, we set both λ1 and λ2 to 0.1. The
main steps of the algorithm are:

1) Initialize Z as the representative features of the
SVD-based solution from Section III-B.

2) Solve for β in matrix equation (ZT Z + λ2I)β = ZT Y.
3) Set all negative elements in β to 0.
4) Solve for Z in matrix equation (ββT + λ2I)ZT = βYT.
5) Set all negative elements in Z to 0.
6) Check whether stopping criteria are reached. If not,

return to step 2.
Here I is the identity matrix. In each alternating step, Z and β

are solved using least squares estimation. In addition to a
maximum number of iterations (set to 50 in our experi-
ments), we use a second stopping criterion: the difference
of approximation errors between two consecutive iterations is
less than 10−3. Fig. 3(c) shows the segmentation result after
applying the ALS algorithm. We can see that the segmentation
accuracy is significantly improved.

D. Influence of Integration Scale

Local spectral histograms involve multiple scale parameters,
including filter scales and integration scales. This is analo-
gous to another widely used image descriptor, the structure
tensor [26]. For a structure tensor, one scale corresponds to the
scale of computing gradients, and the other describes the extent
of local patches over which the structure tensor is constructed.
Despite no theoretical relations, it is common in many practical
applications to couple the two scale parameters in structure
tensors by a constant. For local spectral histograms, with
multiple filters, it is more complicated to couple the filter
scales with the integration scales. Considering that the goal
of filtering is to capture basic and small structures, we use a
set of filters with fixed scales and other parameters and focus
on the effect of integration scales.

The choice of integration scales has a direct effect on
segmentation results. Specifically, as the integration scale
increases, the proposed method produces smoother boundaries.
To illustrate such an effect, we show an image containing
jagged boundaries in Fig. 4(a), where a square window is used
to compute a local feature. According to the coverage of the
two regions within the window, the proposed method segments
the corresponding pixel (the dot) into the darker region, as
shown in Fig. 4(b). With the integration scale sufficiently large,
we obtain a segmentation result shown in Fig. 4(c), where the
boundary is close to a straight line.

Although the smoothing effect may cause loss of important
details, like corners and small objects, it is interesting to note
that the effect tends to reduce the total length of boundaries,
and thus can serve as a form of regularization, which is often
explicitly included as an objective for image segmentation

Fig. 4. Illustration of smoothing effect. (a) Synthetic image containing
two regions with different Gaussian noise. (b) Segmentaion result using our
method. (c) Segmentation result with a very large integration scale.

in itself [27]. In our case, the smoothing effect emerges
as a byproduct of the segmentation algorithm. In practice,
we can choose a integration scale similar to a window size
containing the largest non-repeating texture in an image or
an image set, which can capture meaningful features without
over-smoothing boundaries.

E. Computation Time

The feature extraction step in our algorithm, including
filtering and spectral histogram computation, takes linear time
with respect to the number of pixels. In our algorithm, we do
not need to perform a complete SVD. After the eigenvalue
decomposition of YYT , which is an M × M matrix (M is the
feature dimension), we only need the first several eigenvalues
and the corresponding eigenvectors to construct Z1. β1 can
be obtained by least square estimation. This process can be
quickly completed. Estimating Q is also very fast because
the features are projected onto a low dimensional subspace.
The ALS algorithm generally stops in less than ten itera-
tions. We have implemented the whole system using Matlab.
To segment a 320 × 320 image using seven filters, our
algorithm runs in less than a second on an Intel 2.6 GHz
processor.

IV. EXPERIMENTAL RESULTS

In this section, we show the performance of our method
on two segmentation datasets containing different types of
images.

A. Texture Mosaics

We first test our method on the Prague segmentation
benchmark dataset [28]. The dataset contains 80 color texture
mosaics of size 512×512. A benchmark website is developed
along with the dataset, which calculates multiple accuracy
indicators for segmentation results uploaded by users. The
accuracy indicators include correct segmentation (CS), over-
segmentation (OS), under-segmentation (US), missed
error (ME), noise error (NE), omission error (O), commission
error (C), class accuracy (CA), recall (CO), precision (CC),
type I error (I.), type II error (II.), mean class accuracy
estimate (EA), mapping score (MS), root mean square
proportion estimation error (RM), comparison index (CI),
global consistency error (GCE), and local consistency
error (LCE). Here we use a filter bank consisting of the
intensity filter, three LoG filters with the scale values of 0.8,
1.2, and 1.8, and eight Gabor filters with the orientations
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TABLE I

COMPARISON ON PRAGUE DATASET. UP ARROWS INDICATE BETTER RESULTS CORRESPOND TO LARGER VALUES, AND DOWN ARROWS

THE OPPOSITE. THE BEST SCORES ARE MARKED IN BOLD. THE SECOND BEST SCORES ARE MARKED WITH STARS

of 0◦, 45◦, 90◦, and 135◦ and the scale values of 2.5 and 3.5.
Since it has been noted that the L*a*b* color space is more
perceptually uniform [29], we convert RGB color values to
the L*a*b* color space. The intensity filter is applied to the
three channels and all other filters to the gray scale image
converted from the input image. Local spectral histograms are
computed using all resulting bands. The integration scale is
set to 60 × 60. A fixed ω value of 0.07 is used to determine
segment numbers. Since the dataset contains some texture
patterns that are composed of large sub-patterns, region
merging based on spatial relations has shown to be effective
to improve results [33]. Here we use a simple post-processing
step to form more complete segments. For each segment
from our algorithm, an indicator is defined to be the ratio
of the segment size to the length of the longest common
boundary between the segment and one of its neighbors.
A segment with a low indicator value is small and bordered
by a dominant neighbor, and thus can be merged with the
dominant neighbor. Segments keep merging until the lowest
indicator value exceeds 40.

We compare the proposed method with algorithms that
report leading performance on this dataset, including
the Texel-based Segmentation algorithm (TS) [30],
Segmentation by Weighted Aggregation (SWA) [17],
Gaussian MRF Model (GMRF) [31], 3D Auto Regressive
Model (AR3D) [32], Texture Fragmentation and
Reconstruction (TFR) [33], and its enhanced version (TFR+).
Their accuracy scores are given in [30] and [33]. We also
include a recent method, the voting representativeness -
Priority Multi-Class Flooding Algorithm (PMCFA), which
reports the state-of-the-art performance.3 In addition,
we compare with the Regression-based Segmentation
algorithm (RS) [19], which builds on the same image model.

3The results are provided at http://mosaic.utia.cas.cz/icpr2014/?5. No pub-
lication corresponding to the method can be found at the time of writing.

Table I shows accuracy scores of the nine algorithms. Out
of 18 indicators PMCFA achieves the best score for 14 indi-
cators and the second best for two indicators. The proposed
method achieves the second best score for 12 indicators. None
of the remaining methods have more than three best or second
best scores. PMCFA appears to combine a method from [34]
with a hierarchical scheme. Given the lack of a detailed
description, it is difficult to analyze the complexity of the
complete algorithm. We find that the method in [34] reports a
running time of 12 seconds on a 214×320 image. In contrast,
the proposed method takes 2 seconds on a 512 × 512 image
from the benchmark dataset, so it is likely that our method is
significantly faster. Six examples of the results are displayed
in Fig. 5. RS results are also presented for a visual comparison.
The results from the proposed method are significantly better
than RS results, as reflected by the quantitative measures, and
very close to the ground truth.

B. Natural Images

To assess the performance of our method on natural images,
we test on the Berkeley Segmentation Dataset (BSD500) [35].
We apply the intensity filter to the L*a*b* channels and
three LoG filters with scale values of 0.5, 0.8, and 1.2 to
the gray scale image. The integration scale is set to 21 × 21,
and ω is set to 0.1. Fig. 6 illustrates some examples of our
segmentation results. It can be seen that, without involving
any object-specific models, our method generates rather mean-
ingful results, where main regions are clearly segmented and
boundaries are well localized.

We compare with two leading methods, Texture and
Boundary Encoding-based Segmentation (TBES) [36] and
oriented watershed transform ultrametric contour maps
with globalPb as contour detector (gPb-owt-ucm) [37].
We follow the benchmarking procedure in [37], which
compute two region-based quantitative measures,
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Fig. 5. Example results on Prague dataset. The first row shows original images, the second the ground truth, the third RS results, and the fourth segmentation
results using the proposed method.

TABLE II

COMPARISON ON BSD500

Probabilistic Rand Index (PRI) [38] and Variation of
Information (VOI) [39], and a boundary-based measure,
global F-measure (GFM). Better results correspond to higher
scores for PRI and GFM and lower scores for VOI. Each
algorithm is applied to the 200 images in the BSD500 testset.

Table II summarizes the quantitative measures of com-
parison methods as well as their average running time.
Compared with TBES, our method gives slightly lower
PRI and GFM scores, and a higher VOI score, which
is partially because TBES optimizes information-theoretic
criteria and thus favored by VOI. Our method is outscored
by gPb-owt-ucm, which unlike the other two unsupervised
methods requires training images for the contour detector. Our
method runs significantly faster than both methods. Given
the fact that BSD500 is a benchmark dataset for general
image segmentation while our method is designed for textured
images, the performance of our method is rather appealing,
especially considering its efficiency and simplicity.

V. RELATED WORK

Although matrix factorization has been extensively explored
in many computer vision problems [40], [41], very little

work has been done on its connection to image segmentation.
Among a few methods that apply factorization to segmen-
tation, we discuss two most related ones and how they are
compared with the proposed method.

Sandler and Lindenbaum propose a segmentation method
based on nonnegative matrix factorization [42]. In their
method, an image is divided into small tiles, and the
histograms of all the tiles comprise the original matrix.
Under their formulation, segmentation is performed based
on tiles, and thus additional efforts are required to refine
boundaries. Apart from a very different factorization
algorithm, the factored matrices in their method cannot directly
yield accurate segmentation, and anisotropic diffusion is
performed to obtain final results. As reported in [42], their
method gives a GFM score of 0.55 on the BSD and has a fairly
high computational cost (it takes minutes to obtain a useful
factorization for a small matrix of size 32 × 256). Compared
with their method, the proposed method gives better results
with higher efficiency.

A more recent method [43] factorizes local histograms
at each pixel location, which bears more resemblance to
our method. However, there exist major differences. Since
the decomposition rule of histograms on boundaries is not
utilized, to mitigate the boundary localization problem the
method uses a small local window, which causes the dif-
ficulty in dealing with large texture. Also, the method
determines the number of segment in an empirical way.
Regarding performance, the method is inferior to comparison
methods on the Prague dataset (the paper uses evaluation



YUAN et al.: FACTORIZATION-BASED TEXTURE SEGMENTATION 3495

Fig. 6. Example results on Berkeley segmentation dataset. In each pair, the left is the original image, and the right the segmentation result from the proposed
method, where each region is indicated by its mean color.

measures different from the standard scores provided by
the dataset). In addition, the method takes 22 seconds to
segment an image in the dataset, while the proposed takes
2 seconds.

VI. CONCLUDING REMARKS

We have presented a simple and intuitive, yet powerful
method for segmenting textured images. Using local spectral
histograms as features, we frame the segmentation prob-
lem as a matrix factorization task. An efficient algorithm
is proposed to produce factored matrices that give mean-
ingful segmentation. The experiments demonstrate that the
proposed method performs consistently well on different
datasets.

The proposed method extends the RS method in [19].
The feature subspace analysis and the factorization method
result in significant improvements over the RS method.

More importantly, this paper explicitly relates segmenta-
tion to matrix factorization, more specifically to nonnegative
matrix factorization. This important connection makes it pos-
sible to leverage extensively studied factorization techniques
for improving segmentation results or adapting the method for
specific tasks.
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