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Abstract We propose a new method to infer road net-
works from GPS trace data and accurately segment road
regions in high-resolution aerial images. Unlike previous
efforts that rely on GPS traces alone, we exploit image
features to infer road networks from noisy trace data. The
inferred road network is used to guide road segmentation.
We show that the number of image segments spanned by
the traces and the trace orientation validated with image fea-
tures are important attributes for identifying GPS traces on
road regions. Based on filtered traces , we construct road net-
works and integrate themwith image features to segment road
regions.Our experiments show that the proposedmethodpro-
duces more accurate road networks than the leading method
that uses GPS traces alone, and also achieves high accu-
racy in segmenting road regions even with very noisy GPS
data.

Keywords GPS · Aerial image · Road map · Segmentation

1 Introduction

Inferring road networks and segmenting road regions in high-
resolution aerial images are important tasks that can benefit
diverse applications. Roads are the vital data layer in geospa-
tial databases. Updated and accurate road networks and road
regions are highly desired for route planning and vehicle
navigation. In addition, recent research shows that knowing
road regions provides contextual information that is valuable
in image analysis tasks (e.g., vehicle detection) [12,16,19].
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However, due to the large variations of road appearances,
identifying road regions is rather challenging [18]. A large
number of methods for extracting road regions have been
proposed [2,7,14,17,27]. Most of those methods assume
that road appearances can be modeled in terms of certain
spectral, spatial, and geometric properties that differentiate
road regions from other regions in images. The road model
is predefined or learned from labeled data. However, this
assumption can be substantially violated for high-resolution
images containing complex scenes, where various pavement
markings, vehicles, vegetations, and shadows are visible on
roads. Therefore, those methods have difficulty achieving a
reliable performance.

In this paper, we utilize GPS traces of vehicles to (1)
infer road networks, and (2) guide road segmentation using
recovered road network. GPS receivers are widely deployed
in various kinds of vehicles, which generate large volumes
of GPS trace data. The data consist of sequences of loca-
tion and time information. It has been used for creating or
updating road networks [6,21]. Despite prior work, how to
deal with noise in the GPS data remains a major issue. The
data are often generated by low-cost devices, which give
position records of limited accuracy. The positioning errors
can reach over 100 m in areas with severe signal interfer-
ence. Also, due to energy consumption and storage capacity,
the data tend to have a low sampling rate (e.g., once per
minute). Previous methods of using GPS traces to infer road
networks mainly adopt three strategies including k-means
clustering, trace merging, and kernel density estimation [3].
They perform well in the case when the traces aggregate
more densely on actual roads than in other areas. Unfor-
tunately, such a case is not guaranteed in real-world data.
Figure 1 shows a dataset of taxi traces in the downtown
area of San Francisco, CA, where the traces spread over the
entire area because of measurement errors and low sampling
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2 J. Yuan, A. M. Cheriyadat

Fig. 1 Illustration of raw GPS traces with significant noise. Left the
traces are generated by taxi cabs in the downtown area of San Francisco.
Darker pixelsmore traces passing.Right the corresponding aerial image

frequency. Such trace data are very difficult, if not impos-
sible, to deal with for the methods solely relying on GPS
data.

We present a new method that integrates GPS data with
image features. Computer vision techniques are applied to
images, which identify the traces that lie in potential road
regions. After the traces are filtered based on image infor-
mation, we design a simple approach to obtain high-quality
road networks. Road networks are used along with images
to produce road regions. The proposed method is built on the
algorithms introduced in [23,24]. This paper provides com-
prehensive versions of those algorithms, a complete method
to perform road segmentation in aerial images, and experi-
ments on large real-world datasets.

The rest of the paper is organized as follows. In Sect. 2, we
give an overview of the proposed method. The components
of the method are discussed in detail from Sects. 3 to 5.
In Sect. 6, we conduct experiments on large-scale data and
quantitatively evaluate the results. We conclude in Sect. 7.

2 Method overview

Figure 2 gives an overview of the proposed method for road
segmentation. The aerial image and the corresponding GPS
trace data are taken as input. GPS traces are discretized
into the same image grid. The image is segmented using
a factorization-based algorithm to produce a mid-level rep-
resentation of the image, which plays an important role in
the entire process. The GPS traces are filtered based on their
alignments with respect to image segments and local orienta-
tions estimated from structure tensors. The filtered traces are
mostly aligned with roads in the image and can be processed
to generate a road network. Based on the segmented image
and the road network, we examine the spatial distribution of
region boundaries related to lines in the network and identify
road edges that define road regions. We now give a detailed
description for each step in the following sections.

Aerial image

Raw GPS 
traces

Filtered traces

Road network

Road Regions

Segmented 
image

Fig. 2 Overview of the proposed method

3 Trace filtering

3.1 GPS trace data

GPS trace data consist of location records. Let r : 〈x, y, t〉
denote a record, where x and y are position coordinates and
t is the time. The entire trace data are organized into trips
where each trip is a time sequence of location records. Let
r ij denote the j th record for trip i . Line connecting position

coordinates of r ij and r
i
j+1 represent a trace segment.We drop

time t from location record as it is not used in our analysis
and refer to r ij as a trace point.

GPS trace data are prone to positional errors from signal
interference and device inaccuracies. Additionally, for data
collected at a low frequency, the consecutive trace points
can be far apart that trace segment connecting the points
might span non-road regions making direct estimation of
road networks from trace data challenging. Figure 3 shows
an example, where the middle trace segment does not corre-

Fig. 3 An example of noisy traces caused by low sampling rate
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Image feature based GPS trace filtering… 3

spond to the actual road. Although those trace points may not
be noise, such trace segments can make detecting actual road
networks difficult. We seek to use image features to filter out
trace segments that span non-road regions with the objective
that the road network can be more accurately recovered from
traces.

3.2 Initial filtering

We begin by eliminating non-road trace segments based on
the spatial density of trace points. We estimate the spatial
density of trace points by applying a Gaussian kernel with
σ set to 3 m, which is determined based on expected GPS
errors and road width. Pixels with density values outside one
σ range are labeled as non-road regions under the assumption
that spatial density of trace points on actual road regions
is sufficiently high. For a trace segment, a measure Tg is
defined as the length of trace segment passing through non-
road regions over the total length. We remove traces with Tg
values larger than 0.3. It should be noted that this filtering step
uses GPS data alone to remove obvious outliers but cannot
deal with regions subjected to significant noise. For instance,
this step removes few traces in the dataset shown in Fig. 1
because the point density is high over the entire area. Hence,
we seek to exploit image features to further remove noisy
traces.

3.3 Image-based filtering

3.3.1 Image segmentation

The first technique is image segmentation, which partitions
an image into homogeneous regions. Since road pixels tend to
be grouped together to form large segments in a reasonable
segmentation, trace segments on roads should span fewer
segments than non-road trace segments. We define measure
Ts as the ratio of trace length to total number of image seg-
ments spanned by the trace. A small Ts suggests that the trace
traverses a large number of segments, which is unlikely to be
a road trace segment.

Despite the large number of existing algorithms, seg-
menting aerial images remains a challenging task, especially
for images containing various ground objects [9,20]. We
employ a factorization-based segmentation algorithm [26].
It has shown be effective to segment aerial images with
great efficiency [25]. For completeness sake, we give a brief
description of the algorithm. An image is convolved with a
bank of filters, and a local spectral histogram [13] is com-
puted at each pixel location, which consists of histograms
of different filter responses within a square window centered
at the pixel. The size of the window is called integration
scale, which is a tunable parameter. Such a feature can cap-
ture the appearance of local window, and a homogeneous

region has a representative feature that is similar to other
features in the region.Each feature in an image canbe approx-
imated by a linear combination of representative features,
and combination weights indicate the region ownership of
the corresponding pixel. A factorization-based image model
can be expressed in the following equation,

Y = Zβ + ε. (1)

Y is a feature matrix consisting of columns representing fea-
tures at all pixel locations.Z contains columns corresponding
to representative features. Each column of β is the combi-
nation weights at each pixel location. The largest weight in
each column indicates the segment the corresponding pixel
belongs to. ε represents the noise.

Based on this image model, the segmentation algorithm
aims at factoring Y into two matrices. By applying singular
value decomposition to Y, the number of segments can be
estimated, and a subspace can be revealed where all features
reside. Initial representative features are estimated by analyz-
ing the feature distribution in the subspace. A nonnegative
matrix factorization algorithm [1] is then applied to obtain
the factored matrices that give segmentation.

To show whether our segmentation result is useful for
identifying traces on roads, we classify the trace segments
in Fig. 1 into road and non-road based on their maxi-
mum distances to center road lines that are manually drawn,
and plot the distribution of our computed measure Ts . (see
Fig. 4). We can see that the majority of non-road traces
have a small value for Ts . Here, we remove the non-
road traces by simple thresholding. The threshold is set
to 20 m per segment for the experiments in this paper.
Although some road traces are discarded in this step, we find
they are mostly short traces that happen to cross-segment
boundaries and discarding them does not significantly affect
results.
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Fig. 4 Distribution of road and non-road traces with respect to length-
per-segment values
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4 J. Yuan, A. M. Cheriyadat

Fig. 5 Trace filtering. a Traces after initial filtering. b Traces filtered based on the segmentation result. c Traces filtered by examining the alignment
with respect to the image content. d Filtered traces (blue lines) overlaid on the aerial image (color figure online)

Figure 5b displays the result of applying this filtering step
to the trace data in Fig. 5a. The number of noisy trace seg-
ments is clearly decreased.

3.3.2 Orientation estimation

As can be seen from Fig. 5b, there still exists a notice-
able amount of noisy traces, which happen to lie in large
image segments resulting from either large regions or under-
segmentation. Different types of information are required to
remove those traces.

Inspired by Harris corner detector [11], we propose a
structure tensor approach to examine whether the alignment
of a trace segment is consistent with the image content in
its surroundings. From an aerial view, one can observe that
most objects on and near a road, including vegetation, pave-
ment markings, vehicles, and buildings, spread along the
road. Consequently, if we shift the image patch containing a
road and compute the pixel difference, the largest difference
occurs when the shift is perpendicular to the road orienta-
tion, and the smallest difference occurs when it is parallel to
the road orientation. The structure tensor is used to find the
orientation.

Given an image I and an image window W , we slightly
shift the window by (�x,�y), and the sum of square dif-
ferences between W and the shifted window is written as

S =
∑

W

[I (xi , yi ) − I (xi + �x, yi + �y)]2 , (2)

where (xi , yi ) is the pixel location in the window. The second
term in the equation, denoting the shifted window, can be
approximated by the first-order term of Taylor expansion.
Then, Eq. 2 can be rewritten as

S = [�x,�y]A
[
�x
�y

]
, (3)

where A is a matrix called structure tensor and takes the
following form

A =
[ ∑

W I 2x
∑

W Ix Iy∑
W Ix Iy

∑
W I 2y

]
. (4)

Here, Ix and Iy denote the partial derivatives in x and y,which
are gradients in the image sense. For corner detection, the
relationship between two eigenvalues of A indicates whether
the image window contains a corner.

LetU denote the shift vector [�x,�y]T . According to the
Rayleigh quotient [10], UT AU

UTU
reaches the minimum value,

which equals to the smallest eigenvalue of A, when U is the
corresponding eigenvector. Likewise, the maximum value
equals to the largest eigenvalue. It is reasonable to assume
a fixed norm for the shift vector. Thus, the minimum value
of S is given by the smaller one of two eigenvalues of A,
and it is achieved when the shift vector is the correspond-
ing eigenvector. Based on the aforementioned characteristics
of road appearances, this direction should agree with the
road orientation. The two eigenvectors essentially indicate
the dominant direction of gradients in the image window.
Note that the average of gradients does not well represent
the dominant direction [5].

Now, we can easily examine whether the orientation
of a trace segment is consistent with the orientation esti-
mated from the image. For each trace segment, the image
patch is defined as a rectangular area around the trace that
has the same length as the trace segment and a width of
30 m. The gradients within the patch are used to construct
the structure tensor, and the eigenvector corresponding to
the smaller eigenvalue gives the orientation of the patch.
We define measure To as the difference in angle between
a trace segment and the eigenvector, and only retain the
traces with a To value less than 15◦. In the case when
the image patch contains no road, the eigenvector does not
reflect a road direction and is unlikely to coincide with
a noisy trace. Figure 5c shows the filtering result after
this step. Compared with the original data in Fig. 1, noisy
traces are significantly reduced, and road patterns are now
clearly visible. To provide a better illustration, we over-
lay the traces on the aerial images, shown in Fig. 5d.
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Image feature based GPS trace filtering… 5

As we can see, the filtered traces are mostly located on
roads.

Given input GPS trace dataset containing N trips, repre-
sented as {r1, r2, . . . , r N }, the procedure of filtering traces
is described in Algorithm 1.

Algorithm 1 Trace filtering
for i :=1 to N do
for each trace segment {r ij , r ij+1} in trip r i do
Compute Tg , Ts , To
if (segment meets thresholding conditions) then
Retain trace segment

end if
end for

end for

4 Road network generation

We begin by mapping filtered traces onto image space. By
treating the pixels covered by filtered trace segments as fore-
ground, we obtain a binary image. Now, with the filtered
traces well describing roads, we apply morphological oper-
ations to the binary image to generate a road network. A
closing operation is first performed to fill small gaps among
traces. Closing includes a dilation operation where each
background pixel next to an object pixel is turned into an
object pixel, and an erosion operation where each object
pixel next to a background pixel is turned into a background
pixel. Then, a thinning operation is used to extract the medial
axes, or skeletons, which continuously removes boundary
pixels but preserves the extent and connectivity of foreground
objects. A medial axis point is the center of a circle that
touches object boundaries at two or more points. The cir-
cle radius reflects local thickness, which in our case can be
interpreted as road width. The medial axes extracted from
the binary image give a road network.

For roads that are close to each other, the corresponding
traces can incorrectly merge after the closing operation. As
a result, the medial axes do not represent the actual roads.
Figure 6 shows an example of this issue. Figure 6b displays
the medial axes extracted from the traces in Fig. 6a, which

Fig. 6 Extracting medial axis from filtered traces. a Filtered traces.
b The extracted medial axes using morphological operations. c The
extracted medial axes after corrections

fail to capture the structure of actual roads. Here, we design
a simple scheme to cope with this issue. Since incorrectly
merged traces are frommultiple roads, they tend to form thick
patterns in the binary image. Thus, we locate those traces by
selecting themedial axis points with radii larger than a prede-
finedmaximum roadwidth. The foreground pixels associated
with those medial axis points form a number of connected
regions. The incorrect merging is caused by the traces in the
areas between roads. Those traces are distributed much less
densely than the traces on the roads. Therefore, we reduce
the effect of those traces based on their density. For each con-
nected region, we estimate the trace density using a Gaussian
kernel. A set of thresholds are applied to the density map to
yield different foreground regions, as well as the correspond-
ing medial axes. The medial axes with the largest density
value are selected to replace the original medial axes. The
new medial axes better represent the road structure, hence
a more accurate road network. Figure 6c presents the result
after this step, which shows a clear improvement.

Based on the extracted medial axes, we find all the inter-
section points and end points. We prune those points by
merging intersection points close to one another and remov-
ing small branches. The Douglas–Peucker algorithm [8] is
then used to reduce the path between points into line seg-
ments. A graph can be constructed, which provides a typical
representation of road network.

5 Road region segmentation

Next, we show that the road network generated from the GPS
traces can be further used to produce accurate road segmenta-
tion.A simple yet effectivemethod is proposed in [24], which
utilizes publicly available road vector data to segment road
regions from aerial scenes. Given the road network obtained
above, thismethod can be readily used to obtain road regions.

Given the road network generated above, segmenting road
regions can be formulated as identifying two road edges par-
allel to each line in the network.We overlay the road network
with a binary map representing region boundaries, which is
available from factorization-based image segmentation. We
scan each line in the road network. On each side of a line, a
search space is defined as a rectangular area, which should
be wide enough to cover potential road regions. The distance
from all boundary pixels in the search space to the line is
assigned to bins in a histogram. The bin width is chosen
based on image resolution. The histogram reveals the spatial
distribution of boundary pixels with respect to the line. In
aerial images, we can observe that actual road edges gener-
ally have long detected boundaries parallel to lines in a road
network. Hence, the road edge is determined as a straight
line at the distance corresponding to the highest peak in the
histogram. Figure 7 shows an example, where the histogram
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6 J. Yuan, A. M. Cheriyadat

Fig. 7 Determining road edges based on the histogram of boundary
pixels. The yellow line shows a line in the road network. The boundaries
marked in red are generated by the factorization-based algorithm. The
white lines indicate the search space on each side of the road (color
figure online)

peaks well match actual road edges. As the lines in the road
network may not be at the centers of roads, the road edge
on each side of a line segment is estimated separately. Previ-
ously, in [24], it was shown that this method exhibits reliable
performance with manually generated road networks. Our
experiments described in the next section demonstrate that
this method performs well with road networks automatically
generated from GPS traces.

6 Experiments

In this section, we present experimental results of applying
the proposedmethod to a large dataset.We also quantitatively
evaluate the results and compare with the leading method of
inferring road maps from GPS traces.

6.1 Dataset

We use the GPS trace data of taxi cabs in San Francisco,
CA [15]. It contains the GPS coordinates of over 500 taxis
in one month. In the dataset, the traces in the downtown
areas are highly prone to measurement errors due to tall
buildings. The time intervals between two sample points are
varying, most of which are 60 s, and a considerable amount
has even longer intervals. A vehicle can pass several differ-
ent roads within such long intervals. As a pre-processing to
reduce noisy traces, we remove trace segments with average
speed exceeding 150 km/h. We also remove trace segments
shorter than 15 m, which appear to be very noisy. We use
two geo-referenced color images covering the same areas,
each of which is a 5000× 5000 tile. The spatial resolution is
0.3 m. Figures 8 and 9 show the images and the correspond-
ing traces, which, respectively, correspond to a residential
area, where the traces are relatively less noisy, and the down-
town area, where the traces are the most severely affected by
noisy measurements.

6.2 Road network

We feed the datasets into the proposed method to generate
road networks. The parameter values are fixed in our experi-
ments. The results are illustrated in Figs. 10a and 11a, where
the road network is overlaid on the aerial images. For the
dataset in Fig. 8, although the density of traces on different
roads varies to a large extent, our method produces a rather
complete road network. Roads in the dataset in Fig. 9 are
highly difficult to extract from either GPS data or the image.
Many traces corresponding to roads are completely buried in
noise. Road regions in the image are occluded by vehicles
and shadows. It can be seen that our method generates very
promising results by exploiting the information from both
data sources. We observe that some curvy roads are missing
in the results. Because GPS data are collected at a low fre-
quency, most traces on curvy roads lie outside road regions
and hence are removed as noisy.

Previous efforts have been made in generating road
networks fromGPSdata. Biagioni andEriksson recently pro-
posed amethod that combines several existing techniques and
report the start-of-the-art performance [4]. For comparison,
we apply their method, which will be referred to as the BE
method, to our dataset. We use the code distributed by the
authors.

For quantitative evaluation, we use two indices, complete-
ness and correctness [22],which are commonly used to assess
road network extraction. The indices are calculated through
a two-step matching. First, a buffer with a constant width is
defined around the ground truth road. The extracted roads
within the buffer are denoted as true positive (TP), and the
extracted roads out of the buffer false positive (FP). In the
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Image feature based GPS trace filtering… 7

Fig. 8 The dataset covering a residential area. a GPS traces. b Aerial image

Fig. 9 The dataset covering the downtown area. a GPS traces. b Aerial image

second step, a buffer is placed around the extracted road, and
the ground truth road out of the buffer are denoted as false
negative (FN). Completeness and correctness are defined by
the following equations

Completeness = TP

TP + FN

Correctness = TP

TP + FP
.

(5)
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8 J. Yuan, A. M. Cheriyadat

Fig. 10 Road network and road regions generated from the dataset in Fig. 8. a Road network (blue lines) overlaid on the aerial image. b Road
regions marked in red. c–e Detailed views of extracted road regions (color figure online)

Fig. 11 Road network and road regions generated from the dataset in Fig. 9. a Road network. b Road regions. c–e Detailed views of extracted
road regions

For ground truth, we use the road vector data acquired from
OpenStreetMap.1

1 http://www.openstreetmap.org/.

Figure 12 shows the quantitative comparison of applying
two methods to the dataset in Fig. 8. The two indices are
calculated using different buffer widths. Clearly, our method
achieves higher scores for both completeness and correct-
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Image feature based GPS trace filtering… 9

ness. TheBEmethod constructs an initial road network based
on the trace density and applies map matching to the net-
work to remove the edges with very few matched traces.
When applied to this dataset, it confuses many crowded
noisy traces as roads, which causes the low correctness
rate. Also, because the initial network includes a large num-
ber of incorrect edges, the method matches the traces to
those edges and misses the edges corresponding to actual
roads, which decrease the completeness rate. In contrast, our
method benefits from the use of image information and iden-
tifies much more roads with very few false detections. Note
that some roads are not detected due to the lack of qual-
ity GPS traces on those roads. The correctness rate of our
result is particularly high. The reason is that the detected
roads are actually verified by both GPS and image infor-
mation. We have also applied the BE method to the dataset
in Fig. 9, but found that it fails to produce a reasonable
result.
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Fig. 12 Comparison between the Biagioni and Eriksson method and
the proposed method on the dataset shown in Fig. 8. a Completeness
plot. b Correctness plot

6.3 Road regions

Based on the road networks, we produce road regions for
both datasets, as shown in Figs. 10b and 11b. Several patches
in both figures are also presented to give detailed views of
extracted road regions. We can see that the road regions are
accurately delineated. To quantitatively measure accuracy,
we create ground truth by manually labeling road regions
on images with assistance of road vector data. As a typical
binary classification task, we measure the extraction accu-
racy using precision and recall. Precision is the percentage
of the correctly detected road pixels among those detected
by the algorithm, and recall the percentage of the correctly
detected road pixels among those in ground truth. The aver-
age precision and recall for the result in Fig. 10b are 0.81
and 0.73, respectively. For the result in Fig. 11b, they are
0.78 and 0.68, respectively.

We implement the entire method using MATLAB. On a
3.2-GHz Intel processor, the running time for processing the
two sets of data is 8 and 12 min, respectively.

6.4 Visualization applications

The results of our methods can be transferred to useful visu-
alization. One simple example is to assign a constant road
surface color to road regions, which creates a view of empty
streets, as shown in Fig. 13.

By incorporating trace data, we can also provide traffic
pattern visualization. After obtaining the road network and
road regions, we project each GPS sample onto the clos-
est line in the road network. We compute the shortest path
between two consecutive samples and accumulate the trips
on the road network. The 1-D representation is then dilated to
the segmented road regions. Figure 14 illustrates the results
of counting the taxi trips within three time intervals in each
day. Three cropped areas are shown, where the roads colored
based on trip numbers are overlaid on gray-level images. This
provides a clean and informative visualization of taxi traffic,

Fig. 13 Empty street view. a Original image. b Road regions filled
with a single color
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10 J. Yuan, A. M. Cheriyadat

Fig. 14 Visualization of taxi traffic at three different locations in San
Francisco city. Columns and rows correspond to locations and time
intervals, respectively. The number of taxi trips is indicated by different
colors on road regions, which is superimposed on the gray-level aerial

image. Road network and region extraction enable effective visualiza-
tion of GPS trace signals for better understanding of traffic patterns
(color figure online)

where further analysis can be conducted, e.g., travel time
estimation and hotspot detection.

7 Conclusions

We have presented a new method that integrates aerial
images with GPS trace data for road network inference
and road segmentation. Applying computer vision tech-
niques to aerial images offers valuable information to remove
noisy traces while preserving the useful ones. The road
network generated from filtered traces provides guidance
to accurately delineated road regions. Our experiments

demonstrate that our method can use GPS data with high
level noise to segment road regions in highly complex
scenes. Moreover, we show that our method leads to useful
visualization.

There are several directions for future work. First, the cur-
rent method does not consider fine details of road networks,
such as separated lanes, ramps, and overpasses. One rea-
son is that the coarse-grained trace data cannot provide such
detailed information, which, however, may be available from
high-resolution images. It is interesting to explore how to uti-
lize images to refine generated road networks. Second, this
paper focuses on the GPS data of vehicles. In future research,
we plan to investigate the use of other types of GPS data, e.g.,
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Image feature based GPS trace filtering… 11

smartphone location data, which may be capable of charac-
terizing semantic regions other than roads when combined
with images.
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